--- license: apache-2.0 datasets: - liuhaotian/LLaVA-Pretrain - lmms-lab/LLaVA-NeXT-Data base_model: - Qwen/Qwen2.5-7B-Instruct --- [[Paper]](https://arxiv.org/abs/2407.17331) [[GitHub]](https://github.com/deepglint/unicom) ## Model We used [**MLCD**](https://huggingface.co/DeepGlint-AI/mlcd-vit-large-patch14-336) as the Vision Encoder in [LLaVA-Next](https://huggingface.co/lmms-lab/llava-next-qwen-32b). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6478679d7b370854241b2ad8/8n_jBobanaLNAQjM5eZeg.png) ## Data Our model was trained on publicly available data from the [LLaVA-Pretrain](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) and [LLaVA-NeXT-Data](https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Data) datasets. ## How to eval ```shell pip install lmms-eval==0.2.0 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ python -m accelerate.commands.launch \ --main_process_port=12581 \ --num_processes=8 \ -m lmms_eval \ --model llava \ --model_args pretrained=DeepGlint-AI/llava-mlcd-qwen2.5-7b,conv_template=qwen_1_5 \ --tasks mmbench,mme,mmmu,ocrbench,scienceqa,scienceqa_img,seedbench,gqa,pope,textvqa_val,ai2d,chartqa,docvqa_val,infovqa_val,mmstar \ --batch_size 1 \ --log_samples \ --log_samples_suffix mlcd_llava_qwen2_7b \ --output_path ./log ``` ## Performance and Limitations In our experiments, we replaced the CLIP model in [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT) with the MLCD model to demonstrate the performance of the MLCD model in Multimodal Large Language Models (MLLMs). For the language model, we used [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B). The evaluation results show that the modified model performs exceptionally well across multiple benchmarks, validating the effectiveness of the MLCD model within MLLMs. | Vision Tower | MLCD (ViT_L_14_336px) | CLIP (ViT_L_14_336px) | |:----------------|:-------------|:-------------| | LLM | Qwen2.5-7B | Qwen2.5-7B | | AI2D | **76.98** | 73.15 | | ScienceQA_img | **78.09** | 76.35 | | GQA | **64.17** | 63.31 | | InfoVQA_val | **43.48** | 38.88 | | MMBench_cn_dev | **74.83** | 72.51 | | MMBench_en_dev | **76.37** | 74.57 | | MME(cognition) | **432** | 384 | | MME(perception) | **1598** | 1512 | | SeedBench | **68.20** | 66.80 | | SeedBench_img | **73.75** | 72.72 | | MMStar | **50.98** | 48.98 | | MMMU | **44.30** | 44.20 | | OCRBench | **531.00** | 525.00 | | ChartQA | **67.84** | 66.52 | | DocVQA_val | **76.46** | 75.21 | | POPE | 88.69 | **88.83** | | TextVQA_val | 61.69 | **62.47** | ### C. Limitations Models with larger datasets will perform better on more tasks. We are currently training such models and will soon make them available. ## Acknowledgments We would like to express our gratitude to [Yumeng Wang](https://huggingface.co/devymex) for his significant contributions to the experimental validation in MLLMs.