tanhuajie2001 commited on
Commit
2703754
1 Parent(s): 9e60865

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -1
README.md CHANGED
@@ -12,7 +12,91 @@ base_model:
12
 
13
  [[Paper]](https://arxiv.org/abs/2407.17331) [[GitHub]](https://github.com/deepglint/unicom)
14
 
15
- ## Performance in RoboVQA and OpenEQA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
 
18
 
 
12
 
13
  [[Paper]](https://arxiv.org/abs/2407.17331) [[GitHub]](https://github.com/deepglint/unicom)
14
 
15
+
16
+ ## Usage
17
+
18
+ ### A. Installation
19
+
20
+ ```bash
21
+ git clone https://github.com/deepglint/unicom
22
+ cd unicom
23
+
24
+ # Upgrade pip and install necessary dependencies
25
+ pip install --upgrade pip
26
+ pip install -e ".[train]"
27
+ ```
28
+
29
+ ### B. Inference
30
+
31
+ ```bash
32
+ CUDA_VISIBLE_DEVICES=0 python infer.py --model_dir /path/to/your/model
33
+
34
+ # example:
35
+ # >> Enter 'exit' to end the conversation, 'reset' to clear the chat history.
36
+ # >> Enter image file paths (comma-separated): ./asserts/logo.png
37
+ # >> User: <image>What kind of animal is it in this picture?
38
+ # >> Assistant: The image features a stylized representation of a cat, characterized by its vibrant and abstract depiction.
39
+ # >> User: What color is this cat?
40
+ # >> Assistant: The cat in the image is primarily white with blue, orange and pink accents, creating a visually appealing and unique appearance.
41
+ ```
42
+
43
+ ### C. Evaluation for Embodied Ability
44
+
45
+ #### Step 1
46
+
47
+ Download raw data following [OpenEQA](https://github.com/facebookresearch/open-eqa/tree/main/data) and [RoboVQA](https://console.cloud.google.com/storage/browser/gdm-robovqa)(val part)
48
+
49
+ #### Step 2
50
+
51
+ Converting raw data into the format required for model evaluation.
52
+ ```bash
53
+ # convert OpenEQA benchmark. Note: replace the paths with your own.
54
+ python llava/benchmark/make_openeqa_bmk.py
55
+
56
+ # convert RoboVQA benchmark. Note: replace the paths with your own.
57
+ python llava/benchmark/make_robovqa_bmk.py
58
+ ```
59
+
60
+ #### Step 3
61
+
62
+ Make sure that your top-level directory structure should look like this:
63
+ ```
64
+ |--/path/to/your/benchmarks
65
+ | |--OpenEQA
66
+ | | |--openeqa_scannet.parquet
67
+ | | |--openeqa_hm3d.parquet
68
+ | |--RoboVQA
69
+ | |--robovqa.parquet
70
+ |--/path/to/your/images
71
+ |--openeqa_val
72
+ | |--scannet-v0
73
+ | | |--002-scannet-scene0709_00
74
+ | | |--xxx-scannet-scenexxxx_xx
75
+ | |--hm3d-v0
76
+ | |--000-hm3d-BFRyYbPCCPE
77
+ | |--xxx-hm3d-xxxxxxxxxxx
78
+ |--robovqa_val
79
+ |--robovqa_221911
80
+ |--robovqa_xxxxxx
81
+ ```
82
+
83
+ #### Step 4
84
+
85
+ Run script for evaluation
86
+ ```bash
87
+ # Note: replace 'YOUR_API_KEY', 'YOUR_ENDPOINT', 'bmk_root', 'image_folder' with your own.
88
+ bash scripts/eval/eval_robo.sh /path/to/your/model
89
+ ```
90
+
91
+ ### D. Evaluation for General Ability
92
+
93
+ Install the evaluation tool and execute the evaluation script:
94
+ ```bash
95
+ pip install lmms-eval==0.2.0
96
+ bash eval.sh
97
+ ```
98
+
99
+ ## Embodied Ability Evaluation: Performance in RoboVQA and OpenEQA
100
 
101
 
102