--- language: - ko license: apache-2.0 tags: - generated_from_trainer base_model: openai/whisper-base datasets: - AIHub/noise model-index: - name: Whisper Base Noise Ko - Dearlie results: [] --- # Whisper Base Noise Ko - Dearlie This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Noise Data dataset. It achieves the following results on the evaluation set: - Loss: 1.0514 - Cer: 36.7799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.6152 | 0.8780 | 1000 | 1.6157 | 68.7925 | | 1.1303 | 1.7559 | 2000 | 1.2280 | 52.3127 | | 0.7779 | 2.6339 | 3000 | 1.0609 | 43.5822 | | 0.4133 | 3.5119 | 4000 | 1.0210 | 41.4074 | | 0.175 | 4.3898 | 5000 | 1.0462 | 38.0307 | | 0.0468 | 5.2678 | 6000 | 1.0514 | 36.7799 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1