--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - yashtiwari/PaulMooney-Medical-ASR-Data metrics: - wer model-index: - name: Whisper Medium Medical results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical ASR type: yashtiwari/PaulMooney-Medical-ASR-Data metrics: - name: Wer type: wer value: 19.526912865073616 --- # Whisper Medium Medical This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Medical ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.0829 - Wer: 19.5269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3456 | 0.5405 | 100 | 0.2379 | 17.6684 | | 0.1514 | 1.0811 | 200 | 0.1298 | 15.7615 | | 0.0846 | 1.6216 | 300 | 0.0976 | 19.7924 | | 0.0479 | 2.1622 | 400 | 0.0881 | 19.3338 | | 0.0272 | 2.7027 | 500 | 0.0829 | 19.5269 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0