davelander / config.json
Davegd's picture
Version 1.0
7ae3e65
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7b27a3670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7b27a3700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7b27a3790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7b27a3820>", "_build": "<function ActorCriticPolicy._build at 0x7fe7b27a38b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe7b27a3940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe7b27a39d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7b27a3a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe7b27a3af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7b27a3b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7b27a3c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7b27a3ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe7b30e6840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681921925747896166, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOjhTrcSkA/1D6ZvQD/jL7hHEy8ll+xvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUb6ghQRSakCUhpRSlIwBbJRNWQGMAXSUR0Ckdww35vcadX2UKGgGaAloD0MIYkm5+5zHbkCUhpRSlGgVTWYBaBZHQKR43VoYekp1fZQoaAZoCWgPQwgHeqhtQy1wQJSGlFKUaBVNVQFoFkdApHq1Aqur63V9lChoBmgJaA9DCD5BYrt7F1lAlIaUUpRoFU3oA2gWR0CkgFE6T4cndX2UKGgGaAloD0MIHhmrzb83cECUhpRSlGgVTZsBaBZHQKSCQKG+K0l1fZQoaAZoCWgPQwgoui78YFhuQJSGlFKUaBVNjQFoFkdApIOctdzGP3V9lChoBmgJaA9DCK8hOC7j0m5AlIaUUpRoFU1sAWgWR0CkhNuLBKtgdX2UKGgGaAloD0MIOIWVCioubUCUhpRSlGgVTXsBaBZHQKSGybDuSfV1fZQoaAZoCWgPQwit+lxthaBwQJSGlFKUaBVNjgFoFkdApIgymbb1y3V9lChoBmgJaA9DCMP0vYZg4mxAlIaUUpRoFU13AWgWR0Ckigksz2vjdX2UKGgGaAloD0MIl65gG3FJbECUhpRSlGgVTXoBaBZHQKSLeQ5myxB1fZQoaAZoCWgPQwghPxu5bg5tQJSGlFKUaBVNbgFoFkdApIzOjh1klXV9lChoBmgJaA9DCExUbw3s+2lAlIaUUpRoFU1qAWgWR0CkjqFXaJyidX2UKGgGaAloD0MIowOSsG/BbECUhpRSlGgVTV4BaBZHQKSPz6MR6GB1fZQoaAZoCWgPQwgrieyDLJ5hQJSGlFKUaBVN6ANoFkdApJaB46fapXV9lChoBmgJaA9DCOp1i8DY6WlAlIaUUpRoFU1rAWgWR0CkmG1MdtEYdX2UKGgGaAloD0MIZXH/kemVbECUhpRSlGgVTXoBaBZHQKSahlFtsN51fZQoaAZoCWgPQwjncRjMn25xQJSGlFKUaBVNcgFoFkdApJve5avA5HV9lChoBmgJaA9DCMxgjEgUCW1AlIaUUpRoFU11AWgWR0CknTbUwztUdX2UKGgGaAloD0MI6bevA+dGb0CUhpRSlGgVTXQBaBZHQKSfDwZwXIl1fZQoaAZoCWgPQwgnE7cKIsBxQJSGlFKUaBVNigFoFkdApKBNBUrCnHV9lChoBmgJaA9DCN16TQ8KKmpAlIaUUpRoFU1aAWgWR0CkoXpxeb/fdX2UKGgGaAloD0MIE9VbA5t/cECUhpRSlGgVTVEBaBZHQKSjPvES/TN1fZQoaAZoCWgPQwjgumJGeLxwQJSGlFKUaBVNNQFoFkdApKREP8Q7LnV9lChoBmgJaA9DCJ7PgHqzRm5AlIaUUpRoFU1iAWgWR0CkpZVn27FsdX2UKGgGaAloD0MIXOhKBCrua0CUhpRSlGgVTXMBaBZHQKSnZdLxqfx1fZQoaAZoCWgPQwj5hVeS/FVwQJSGlFKUaBVNggNoFkdApKwj/+85CHV9lChoBmgJaA9DCE3bv7KS43BAlIaUUpRoFU3QAWgWR0CksOjTKDChdX2UKGgGaAloD0MIL8IU5VKya0CUhpRSlGgVTWYBaBZHQKS0jh5PdmB1fZQoaAZoCWgPQwhDU3b6wQRsQJSGlFKUaBVNaQFoFkdApLZtwBHTZ3V9lChoBmgJaA9DCDj0Fg/vg21AlIaUUpRoFU1xAWgWR0Ckt8NNJvpAdX2UKGgGaAloD0MI7s7abZdWcECUhpRSlGgVTWwBaBZHQKS5jKg7HQ11fZQoaAZoCWgPQwjO+/84Yc9uQJSGlFKUaBVNdAFoFkdApLreXw9aEHV9lChoBmgJaA9DCPtcbcV+125AlIaUUpRoFU1XAWgWR0CkvA8pLEk0dX2UKGgGaAloD0MISIld29u/XkCUhpRSlGgVTegDaBZHQKTAYI1LrX11fZQoaAZoCWgPQwhnmrD9ZEtvQJSGlFKUaBVNbQFoFkdApMIsqlP8AXV9lChoBmgJaA9DCFluaTWkYW1AlIaUUpRoFU1rAWgWR0Ckw4DR+jM3dX2UKGgGaAloD0MI2xMktjtRb0CUhpRSlGgVTWgBaBZHQKTEwaisXBR1fZQoaAZoCWgPQwhF8wAWeaZvQJSGlFKUaBVNUAFoFkdApMaW5Yoy9HV9lChoBmgJaA9DCNKJBFPN3m9AlIaUUpRoFU3fAWgWR0CkyFAntv4udX2UKGgGaAloD0MIyAkTRrNQakCUhpRSlGgVTW8BaBZHQKTJmTINmUZ1fZQoaAZoCWgPQwg5tTNMbW5YQJSGlFKUaBVN6ANoFkdApM/XLPldT3V9lChoBmgJaA9DCKuVCb/UBm9AlIaUUpRoFU1nAWgWR0Ck0mbNbC79dX2UKGgGaAloD0MIRdREnw8Wb0CUhpRSlGgVTXQBaBZHQKTUB7XQMQV1fZQoaAZoCWgPQwgTEJNwodJvQJSGlFKUaBVNYQFoFkdApNW4Qg9vCXV9lChoBmgJaA9DCEkqU8zBbHBAlIaUUpRoFU2GAWgWR0Ck1w0svqTsdX2UKGgGaAloD0MI1H5rJ0rjbkCUhpRSlGgVTU4BaBZHQKTYNFfAsTZ1fZQoaAZoCWgPQwgvGFxzxwdwQJSGlFKUaBVNkQFoFkdApNoe4/eLvXV9lChoBmgJaA9DCGXiVkEMZDFAlIaUUpRoFU0VAWgWR0Ck2wjneSB9dX2UKGgGaAloD0MIQxuADQhCa0CUhpRSlGgVTWkBaBZHQKTcSxqwhW51fZQoaAZoCWgPQwga3xeXKqBqQJSGlFKUaBVNYgFoFkdApN4Kk0rK/3V9lChoBmgJaA9DCB1Z+WUwbmtAlIaUUpRoFU1kAWgWR0Ck30plSS/1dX2UKGgGaAloD0MI00uMZXrubkCUhpRSlGgVTVIBaBZHQKTgaoUi6hB1fZQoaAZoCWgPQwhv9DEfkL5vQJSGlFKUaBVNSQFoFkdApOIV4iX6ZnV9lChoBmgJaA9DCDS+Ly7VImxAlIaUUpRoFU1FAWgWR0Ck40Rd6cAjdX2UKGgGaAloD0MIePLpsS2qbUCUhpRSlGgVTV0BaBZHQKTkgYyfthN1fZQoaAZoCWgPQwg4SIjyheluQJSGlFKUaBVNZwFoFkdApOY7AP/aQHV9lChoBmgJaA9DCNNQo5CksnBAlIaUUpRoFU2dAWgWR0Ck561zQu27dX2UKGgGaAloD0MISIszhnlWcECUhpRSlGgVTZIBaBZHQKTpradMCcR1fZQoaAZoCWgPQwiAf0qVKBNuQJSGlFKUaBVNRwFoFkdApOvzXcxj8XV9lChoBmgJaA9DCKAZxAd2uW1AlIaUUpRoFU2CAWgWR0Ck7g2KuSwGdX2UKGgGaAloD0MIvMtFfCcQbkCUhpRSlGgVTWgBaBZHQKTv+aqjrRl1fZQoaAZoCWgPQwhd34eDhNpvQJSGlFKUaBVNfQFoFkdApPHhmXgLqnV9lChoBmgJaA9DCELNkCpKUnBAlIaUUpRoFU1AAWgWR0Ck8uac7QsxdX2UKGgGaAloD0MIYW2MnfDub0CUhpRSlGgVTaQBaBZHQKT1BQVsUIt1fZQoaAZoCWgPQwi1wvS9BvJtQJSGlFKUaBVNTwFoFkdApPYx88cMmXV9lChoBmgJaA9DCE/ltKfkVXFAlIaUUpRoFU28AWgWR0Ck99Cs4ku6dX2UKGgGaAloD0MIRgckYd9FbUCUhpRSlGgVTXIBaBZHQKT5qJtzjm11fZQoaAZoCWgPQwgJ4Gbx4o5uQJSGlFKUaBVNZQFoFkdApPrsKTjebnV9lChoBmgJaA9DCBSVDWsq7m5AlIaUUpRoFU1uAWgWR0Ck/CmYrrgPdX2UKGgGaAloD0MIY2Adxw8ab0CUhpRSlGgVTYUBaBZHQKT+Gb2Dg651fZQoaAZoCWgPQwgiUtMupplsQJSGlFKUaBVNVQFoFkdApP9ZRGc4HXV9lChoBmgJaA9DCLn6sUk+PnBAlIaUUpRoFU2HAWgWR0ClAL6qbSZ0dX2UKGgGaAloD0MI1TxH5LvicECUhpRSlGgVTUABaBZHQKUCXuNPxhF1fZQoaAZoCWgPQwi/uFSlLU1rQJSGlFKUaBVNWQFoFkdApQOYznA6+3V9lChoBmgJaA9DCFGlZg80+WpAlIaUUpRoFU1rAWgWR0ClBSHQID5kdX2UKGgGaAloD0MIr2Ab8WS3FUCUhpRSlGgVTR0BaBZHQKUHFnp0OmR1fZQoaAZoCWgPQwgWFXE6yVRgQJSGlFKUaBVN6ANoFkdApQyyPbO/tnV9lChoBmgJaA9DCCbD8XwG72hAlIaUUpRoFU1dAWgWR0ClDd4FzMibdX2UKGgGaAloD0MIAOKuXkXiOkCUhpRSlGgVTQgBaBZHQKUOuaoddVx1fZQoaAZoCWgPQwgtswjFVgdRQJSGlFKUaBVL/2gWR0ClEBiVjZtfdX2UKGgGaAloD0MIthK6S+KJZECUhpRSlGgVTegDaBZHQKUUGvJRwZR1fZQoaAZoCWgPQwj1nsppTwZuQJSGlFKUaBVNWQFoFkdApRVWV1Oj7HV9lChoBmgJaA9DCKBtNesMKW9AlIaUUpRoFU1EAWgWR0ClFnG4AjptdX2UKGgGaAloD0MIs7PonYp1cECUhpRSlGgVTZcBaBZHQKUYQfwI+nt1fZQoaAZoCWgPQwh1IVZ/hE5wQJSGlFKUaBVNPQFoFkdApRlJxrBTGnV9lChoBmgJaA9DCHLhQEgWN25AlIaUUpRoFU1DAWgWR0ClGmOTibUgdX2UKGgGaAloD0MIE7u2t5sJcECUhpRSlGgVTVkBaBZHQKUcG9h7Vrh1fZQoaAZoCWgPQwgKo1nZvpNvQJSGlFKUaBVNdgFoFkdApR1mOGTLXHV9lChoBmgJaA9DCJzexftx62xAlIaUUpRoFU1dAWgWR0ClHpq3d9DydX2UKGgGaAloD0MIr7K2KR5ZUECUhpRSlGgVTQIBaBZHQKUfYXJo0yh1fZQoaAZoCWgPQwh+ObNdIVFxQJSGlFKUaBVNTwFoFkdApSFPfwZwXXV9lChoBmgJaA9DCOymlNdKVW9AlIaUUpRoFU1LAWgWR0ClItjaXa8IdX2UKGgGaAloD0MIUS0iisnjbECUhpRSlGgVTV0BaBZHQKUk11g6U7l1fZQoaAZoCWgPQwi4OgDirtpvQJSGlFKUaBVNPwFoFkdApSfeuvECNnV9lChoBmgJaA9DCD4+ITtv4wtAlIaUUpRoFU0mAWgWR0ClKTxUedTYdX2UKGgGaAloD0MIyThGskcgLkCUhpRSlGgVTSgBaBZHQKUqTRBu4w11fZQoaAZoCWgPQwikpl1MMyhwQJSGlFKUaBVNpQJoFkdApS00Gu9vj3V9lChoBmgJaA9DCMjNcAN+P3BAlIaUUpRoFU1bAWgWR0ClLmfgrH2idX2UKGgGaAloD0MItjAL7Zw/WECUhpRSlGgVTegDaBZHQKUyjFFUhmp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVLAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDGMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAKus6gsy4wAYfJspghPLQ1/eoyvifgdFZ7Oba+G9elupiE7VqDJvf+59FgGkqIyNeIn2VKaquDHr8Z9yhm11OSVdqM1uH32RDxAgfRsk02xixecicHDjuvcPsKyE/+9hdaj1/xiVYtCtnZMjmNmvdIvUI51nP62DbyV/VawpGyZ8oZv2ax7Iun9KJ5vj8WUltkzdvvpFrH0+LDkQBtx4+BuxLYsIpNtXhpKTlRfs1iqqxjElbsNi8GeKH0DEtrrvXt28eh75rEwcOLH6T0GcjwSjVGX2WSI0aZ6HwDPjWoIevYjVDu5ZTY0uCwcMhAXoGMD7HKk3L7Marezd/SHayUFV4D7C/EG+a7tscoR5XSbbIpRTEw4x7uKQ7XWvPV4KZY/i51FnZpzf3mr14bgc5fibdLjz9y1iwpX5n5D6UXFi4xtRoeG+6mPBh+ynkvGQSShB5UdoXH4191UYitnnTsvIC6taYLPynOLRNX8yDHxbJBJPEFeQQfuyg75aU1MdZMQgekdNr/HR0+I+LoQ+GtKwasl6k/4v0MNPfWVk7ls0iIMn54e5OJaB2WE1Vh5d9gPsYYGQE2i7L2U2feCd3yEhK9qHmW03cv4p/9HKWBrRsRO3yiQcANcdZ5oputwPrL+nu1mCwHXi0btV4vNQkf2IadwLTx6IM5l4yfVfoALG0ud/AuSTXWaXuCk3w2JztBuQ8503Kgl01MN2AThzyfXYkZEygOJ4sMU92Lj4RHcsLALONEmErG5fHvYfcPOluEOc7+rCvvrQiqVit7lJJ3vBMgnrfI7N2H/5G5o298pgK0OiJZ8A3D+Qg5So7SPYnzX8PkVA2Lmqva6L9ZHr9eXTzQqgxTWKa8ISubBhU9XWF1OvcxCYq7BXKpzcUUm0ySf+Nii9f+VCh5pKkoUAqZBBIJJk6NHwA1VznU4erMkjQDyPUDMzsLW24i2lZocRnfnp5P9SDtfO4ZxEMee2w1YhzJsqOdvSLAAEqetEL8vOyln3hKIgmcLVvmQyg0odcePATj5ObJ2RG2kvOkDItbx0MZWzDiew/HXHK5lTc83w3HWxL+yAvW9CbXh15bQbn2WkkBzntP7HVS9ycTxe0LFd+CXxVbHVLBpn7tOPuh3Hih4ne/IckV8pRuUTT5Oe1EZsr8RKiOwGnSXev6+jMHEtXypsbnkfpiKR4VbZwWxeYAJGFGY7xz+WdVgdgiW7AtAVdR6kIjfIlBwOnOJzQBb++yIeH2ejKG9JcGuy7C7mQfoITiojQ+p9GsffH4Y0Q0IhobR5JUAytJo7QEUmOHy6IyMRyPLbrvktakgTLF0x48E4Sa7lZYQx4suTnxLbkgNAQzMNkS226YAGi8GdsYdgVeQleyPnTds6kb/COtBW9pFSX8kiZfBUQ3NO1p4tlUbHy3nHZvcpBuc2Bh80QXrkieoeXC39YeafrRpTziXjPTuuX4LlJKNGRO28SkSI1DCunZ1MBtHGUgiMWZp2lEQse7CXaWTpzS4vRO96Ztf9pqm/hTo1ZHNpcLFIitwJN6++7Td6n3+7/rv1up8StwkdN5YlcHk4uJ2SK+Y2C20AeHKIk7KynKnos3PStn1PL17CzKJkBgWUBH5SsfjWo5YBB7RYkuFBq1HOE36PWZF8lhAvQoHQKYwxWH48J9G655gw6s2W+ngpJM8WHnYJWCevlSr8VPC4FtKlRuQiAc7Pp3vrjWbMqoQ1ZGdWYML9mInZEA8mgjb+b2+QJBYFdKloPPhstnhqU5Fn6xHHn79qTPGTcBK6lPdhM/cm7PtA0Puv6QRS+oZl3jeRaip7Y6RnAeyfh/pPrAFN22Znz/R8f5x9LF2DzgGp8nkcS2wrBlNL9xanBP+u0wnpqt3s2Nkbt2OimfOMHmngeqaLFlbRz3EWUZTF69Bt/y8jyrb1tuCSe2UVQuB9/PZqvfpbYLMntvcmoS9alS29unn4qpHFZ/je3mmVqyKVaVqT1fMOuqxXV3VTGh5C0mnkZZJFq796kYJpzvekn9LSzC+W/0xggUc5bYsJ/lNvrgsHRa/xgwwcC2FjXNep+lFEvUw2qcqL9aPyd1KeVCZb+mpGbx8LzePTGT8LVNpEyniy2yZaizMPYPdNpC5RYQVqwaI+ABLTJpLX/RmIZZNEmafkZZr3ttlWu39FQH+o0oyy0nxO64RpDFR5qMAHQnku90jwgnHVAmqHijjhPg5uKho4vvlS5TARAyF0mFcY83/LKDd3nK82gcFNX8E7n32+Byh0Ju0dzFpZJ9W1VBirjYkfD3RW1DEtRixFZjbCrbjzYVoZfmfRYw6YCziD6qJJ+gkEf8rWKUaaCtw1zY17T0NzMs4H1MqwV+aaSlQNNEaZkPwWVkvKjHb0gjvPxbe5kFajAU51LJECgFy0JqzNua98QeN3IGsctQeC+HokExQlPAfC9f4CHcp7/504xCvnBACypXAnXpHeP+bhcWccs+qc1p7fN++d4C1/QPY7X8ImFb+ysI4HNK/a+9z1xhwDvZVIex5D97UTocMb72RHtatjMkOAi1OgBKeqVVSHVx+NfcHI9RP68aJ5Sqp7pWGX+65nczW143XB2pIiPyE3qL/2kZeExj2Ryv2bneCEgaHkUzwS5UkbIeLNpn4r5eizPxCHLrksWYctFCIKl+2k1lpd9PmK8uQnpGqC8sMJFZWGYmzL+pWRdFonlcM5TwLnahPDAA8qjkwUGde049HakngpGcn/U7yyZ60SptGenFjxsaQdBl/F6RKmvdFyMBJapgoZIKfMmXHoXj6+bsszPiB4HPO9sAUXCNsNRoWAoWfEctAtyeFbvfgGrtPXKmLDAZdDoAggMC1py7Q2pRcLON6GJ8BKCALBDEDkBZzuwpDsh7nnG0zQqmLoNnhM/V7zhBWVCpnu7QunXrYmnzWflG1ggB3N/2+HWSjAQgis1dYuTl3pbQsJK1fhEwzY8SDUAdn71laCDYn67+JG+JBfRD/aRGzozoU3+EL2QjIX1uZFZntGs/x5LqYeoO+LZveQvXoPt+gzoDfPD4Mf85SknrC1r5O0pZx0rFuY9MDk6/DgkFHkpvdIbQQHOt9NzYFaI4a+9w4T7HGovJE+OhfOS5hVJD61D7MNUcHCKHGko9rUV29RliWRxBVNBROI0siBEzixh7j8w0wkfkVNTKx+cuQ85YZ0/c3s5sAgPEe9zSLye6pb83pAFM0YWs8jf0HrxWIxHKFt81EIC2JTF3b098zgsJmWHltym0eOMYRB9RuqqZmCDNtLuNOv69KSuBRWBpGAM+YZcUIwpGvNJD8IFtu9CVYQgjd0DKDhx2Wv0cEnuemda5RoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVNAsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAmb2grjsuPf+7h9mG3t5RoOBBzyrodRokbUm2777cZMAwu0HRg3lLGwXEXXKjXbd0K0yeQH/grxQiDxqRaNdseIfykrfBZllzXHKr60t44Om2ieh6kn1AiEyAi17BejG0CZ0C2QtHuPHGUcWCRsHPCK7V5PqzKoW66HoL4AaLSLpUgvfywLxmpFGcWu3XgUloiJFauGiRGpIDWd6vc2Ygl/XOTmGORFKcBxYRdnxQs2q4H3Rs8jM2yEZm3u+nMjp6bERgMhF44q65Y+UF5GqZ5G12BiqVQtgXRy9i5SYnoFSpjwY5CORJPpsrqG0Aq3kAYXztMDGGcWQ4TWyjiS3VVsSaXGp+Kft8vuVdmZUPEaC2hFnwFqMizM4x2YKRHKC4qwo6D2mL2/9+o4zKK/R2Hol9LhRD6lmpZSmwKCja+dux6pdM5kKocb9PwWlusBZld1nPxYfMRLdT1ZAeLH0qQ7WMKXmOmiwdq5ky8dwJeeA8+gEkZb6YWZxalRHTUKBwuuvOeiQGZ5h7pQ4TqKZc9KfS4EPx39fDsjx78/5fR9XqIqO1DWTgDcqFIKlRRzXOH8B8SJtudvrTC3YN5r6uzgjHWvKYZAWeMuEGhPHvq/ckMVXdAGeRDpRnh5ixC4+Dzt/f6CabwHkjJMC/tSKY2YjeAVP+XvgvroABRX31m5McGWLAPOdhMFd5rE6i/R/CKUA71yFmoaW6gyXE+ENe7BiwuN1K+NNv8PDJV+uBZW22VtA3W/RZNNKA9ErNiBDkUg+/NV8eoP61Kf5+wNCM/EHGu9MFCe0p5bCeulWqQdblnANMO/2qkfrhPuVnpNGeGm8kKa45XbMVAO3k2PrA58IpNaFHB5n3v3Qc8aYa/WiRpcseV0x66UDs3E1pKw3g+/D7XFmUUd3GZHJn3g+CA7X0oHOvv6lguSIOAs22gQscrjW5QuV/GO64/swNsvrDolgQGAS5+JGqkQhPPEBCixv8yywTYMN9VokWAjxEjoEwdY7JUGVyjhWNJxO8A0Al00xEI9NFe+MbNOqYyP6NEzk8Nw269hriAx/7CRPaYRLXvIvA3LERkN19c5Cn4asFidlZ3AVJwtqUhyOejWcZIXKFEZc9ezEZq1BxztewedkJclwU9lGNBcfQhA7A89eEanBfywP/JMhCZUDl/AxhKM1ePJFasutpBTb5yPaJZYSPoe3B/dSwg1XOqLqzZnC6Hht8b5J4gO1YrgjoWcvHdstD6TvcA/o8WnzR1QkTf5JsV78tkcsX39P3S2knwCKKq+0zQ2VNBEzMZn2lMhJqXXDMNNtC9lI98dfk834I/1BOwqlW0FhPYu3ROxScP/X5hP5NMuN6U7C6217B8Ebd7Xa8vjS+KjYcBabWc2aF/397j83zf0kOw/bWJdlYsf+kZqy/BYHv68cpZNUlCFDkxaETt2nUJuuXcHds8Lx7HZQ7sMRTnOhHkZst0AqfTtx8iWpIDGkmkQ8fT8mZzSDKQanYMghuXJ+fEKA69zxEvG5TvZ1J28IDamzH/HRTuizbeXLtIOtUDWmlIoWOmtZehYYuAbBG1smM4nxoccAm6MCdeQtLPERPxrmusWmjoGb1xAxD1rvf04RzIz0j5wdFVd9hobMdNLwBQQ6aUp/RAo/ijYiMLbChgBKlI8Wy5Y/aKvHk4X23A0X51Hrtgncvw8H9fZWzd3khZm/KUDYkEXEvyhiHM0XDOOQaS3yNWgu7nEZxGn38KXOZurmwgekJQa+VXnr3aeRWt7B7PH2+BVjf1K9CzrJovyMPhh/bRnaNh6qPvdOvVUhm2KPhFzdQieo6toBf/5Yg0XXd/2AmzeNelDum9m64DPmEV6EdWnfz4JCiu5JT8aFZuRjeakWoc3MJEt+8OoCqIWYy4tJcvpwf80OlkYUGxditEZ3BLLEgoMe6MSJQUQk8OmLCCGz7HKGRUutceQ6ZHpBrRcTOqJqVmq6q4stENowIRnTvw5Is0taX0NU8Y3mLyf9/oVNKf5JiFzmO13WXhnFwBwP1sKn4d7UpZO6kwdM/RAGCvc0SKJ/f5fF37WsV863A0tIoxPk7dfEY7EHTp1dt/wrFGHe/VE03qipVppdNE5b9Ol/0QFHRdoc/ycI26GSjqHLmK++vGXPA6X7jOVtCLI4/Xfpn9GxQUQTPrtHb60t+U3aJ+0lmvu1b8iBbWaWpNWBoWAAj0C7UwmpjCGA2mYsSnRQzHnfpfM0v4//YTo0IQg0kAMTXROfBQ+A9obEbPXc+MLO4NRPJAZx6ljIoZfOxj4PNlXXeCwA/nvfkxHTaQg/bUyDQok0J6vpjSsTOZD2+nhnvMoqf3D0b44K33SsbQFfxY1yN0cXfrHcEAdhhz8b9rXBzxLiLT2WJGrltl0sUgBs81RFyCwikWe3M7+bGEPzN1zvuDxIecSO29rzWRB8Do8RQzI+iSimWQ5PSkBOtqaQLHaTcJmiI5Lh2gNpqQ6eTUAiXjypFlAtaMy72gxxNuBG4a4B8LRM502lLcZP0XHYxJEgCx67reGgu1iJGhz0o2Ar5e+Qej9aH6MiakT3iUG/7SEq5LBpfydwKfZEPoqTJgJ+VxMI+434EXb/hFpFCRA9Zid+Xd9NazTCyCL78bFMY0LehNNjNYkgfeg/J34nNKR8dXXTg0MAV2S9o7QHk+PI4p8/MlZZaNhb4wlmG6m5/Sbmz6Z5jEMF43fNQ+7ar/hTMKNhfj9Xsn8zoffGFKhoDeocaauROhpUp9YwISp0CgDr3lvs3cpaSbBR7GUMHe/kB8ltIXfY/XPeauhW9N9BGXAP0b9psOolfBiHxnwaxC8T8krCbqc3dFnE6wh31YDJKwbq1o9Q9t/d4vaNnbNe7a0jE3h/4TBz7F183+Oy5Luat3h6OC4E5d5TRzZjKXwmz6d+uEvCHQIsGDBtr2YKXl6WMkwh1ockbDxRt4vEqBuj9ZArsjYaBnHyXTGyHgrkMbNYEq3ED7NzyGLu7tbnxfogoQNNt1Fl8SCTlH+9hERJu/PA2PiJYCgldGCclZvnOKeCAODaCD6LdzceHxePQ8GMInYrhYqs+QSPPeG0BlcbT0YkFK0hat6OoIanCgZltRhx65ZqxByN6O8wMgsRyoWmgoUNEs8FPRLN1WcmrtKmVHlc/LalmsU+jyimKikUTexTqciv/z4X8GD8/4fNYLgyfBuTPOAFLkuxY3aIr4kp3vwgPjM4uLKFaDvv/K7ZGvEDhgXwifJkL0gOz5z9EJZrSdpeSohVr/L+QVgNIrEs1hX7IiYOqc/oaXQLYxRgEYGxc/muXfl4rKMQyr80a8maj4XjBnYJTv4n4lGgKjAJ1NJSJiIeUUpQoSwNoDk5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}