PocketDoc commited on
Commit
165d06a
1 Parent(s): e6b335d

Delete configuration_stablelm_epoch.py

Browse files
Files changed (1) hide show
  1. configuration_stablelm_epoch.py +0 -117
configuration_stablelm_epoch.py DELETED
@@ -1,117 +0,0 @@
1
- # Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """ StableLM Epoch model configuration"""
15
- from transformers import PretrainedConfig
16
- from transformers.utils import logging
17
-
18
-
19
- logger = logging.get_logger(__name__)
20
-
21
-
22
- class StableLMEpochConfig(PretrainedConfig):
23
- r"""
24
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
25
- documentation from [`PretrainedConfig`] for more information.
26
-
27
- Args:
28
- vocab_size (`int`, *optional*, defaults to 50_304):
29
- Vocabulary size of the StableLM model. Defines the number of different tokens that
30
- can be represented by the `inputs_ids` passed when calling [`StableLMEpochModel`].
31
- intermediate_size (`int`, *optional*, defaults to 6912):
32
- Dimension of the MLP representations.
33
- hidden_size (`int`, *optional*, defaults to 2560):
34
- Dimension of the decoder layers and the pooler layer.
35
- num_hidden_layers (`int`, *optional*, defaults to 32):
36
- Number of hidden layers in the Transformer decoder.
37
- num_attention_heads (`int`, *optional*, defaults to 32):
38
- Number of attention heads for each attention layer in the Transformer encoder.
39
- num_key_value_heads (`int`, *optional*):
40
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
41
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
42
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
43
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
44
- by meanpooling all the original heads within that group. For more details checkout [this
45
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
46
- `num_attention_heads`.
47
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
48
- The non-linear activation function (function or string).
49
- rope_pct (`float`, *optional*, defaults to 1.0):
50
- Percentage of hidden dimensions to allocate to rotary embeddings.
51
- rope_theta (`float`, *optional*, defaults to 10000.0):
52
- The base period of the RoPE embeddings.
53
- max_position_embeddings (`int`, *optional*, defaults to 2048):
54
- The maximum sequence length that this model might ever be used with.
55
- Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
56
- initializer_range (`float`, *optional*, defaults to 1e-5):
57
- The standard deviation of the truncated_normal_initializer for initializing
58
- all weight matrices.
59
- norm_eps (`float`, *optional*, defaults to 1e-8):
60
- The epsilon used by the normalization layers.
61
- use_cache (`bool`, *optional*, defaults to `True`):
62
- Whether or not the model should return the last key/values attentions
63
- (not used by all models). Only relevant if `config.is_decoder=True`.
64
- use_qkv_bias (`bool`, *optional*, defaults to `True`):
65
- Whether or not the model should use bias for qkv layers.
66
- tie_word_embeddings(`bool`, *optional*, defaults to `False`):
67
- Whether to tie weight embeddings
68
- attention_dropout (`float`, *optional*, defaults to 0.0):
69
- The dropout ratio for the attention probabilities.
70
- """
71
- model_type = "stablelm_epoch"
72
- keys_to_ignore_at_inference = ["past_key_values"]
73
-
74
- def __init__(
75
- self,
76
- vocab_size=50_304,
77
- intermediate_size=6912,
78
- hidden_size=2560,
79
- num_hidden_layers=32,
80
- num_attention_heads=32,
81
- num_key_value_heads=32,
82
- hidden_act="silu",
83
- rope_pct=0.25,
84
- rope_theta=10_000,
85
- max_position_embeddings=4096,
86
- initializer_range=0.02,
87
- norm_eps=1.0e-5,
88
- use_cache=True,
89
- use_qkv_bias=True,
90
- bos_token_id=0,
91
- eos_token_id=2,
92
- tie_word_embeddings=False,
93
- attention_dropout: float = 0.0,
94
- **kwargs,
95
- ):
96
- self.vocab_size = vocab_size
97
- self.max_position_embeddings = max_position_embeddings
98
- self.intermediate_size = intermediate_size
99
- self.hidden_size = hidden_size
100
- self.num_hidden_layers = num_hidden_layers
101
- self.num_attention_heads = num_attention_heads
102
- self.num_key_value_heads = num_key_value_heads
103
- self.hidden_act = hidden_act
104
- self.rope_pct = rope_pct
105
- self.rope_theta = rope_theta
106
- self.initializer_range = initializer_range
107
- self.norm_eps = norm_eps
108
- self.use_cache = use_cache
109
- self.use_qkv_bias = use_qkv_bias
110
- self.tie_word_embeddings = tie_word_embeddings
111
- self.attention_dropout = attention_dropout
112
- super().__init__(
113
- bos_token_id=bos_token_id,
114
- eos_token_id=eos_token_id,
115
- tie_word_embeddings=tie_word_embeddings,
116
- **kwargs,
117
- )