---
library_name: transformers
base_model: Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML
tags:
- generated_from_trainer
model-index:
- name: l3.1-8b-dans-instruct
results: []
license: apache-2.0
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code:
# wandb configuration
wandb_project: l3.1-8b-dans-instruct
wandb_watch:
wandb_run_id:
wandb_log_model:
# where to save the finished model to
output_dir: ./l3.1-8b-dans-instruct
# dataset settings (local or huggingface repo)
datasets:
- path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
type: dan-chat
- path: AquaV/Energetic-Materials-Sharegpt
type: dan-chat
- path: AquaV/Chemical-Biological-Safety-Applications-Sharegpt
type: dan-chat
- path: AquaV/US-Army-Survival-Sharegpt
type: dan-chat
- path: AquaV/Resistance-Sharegpt
type: dan-chat
- path: AquaV/Interrogation-Sharegpt
type: dan-chat
- path: AquaV/Multi-Environment-Operations-Sharegpt
type: dan-chat
- path: PocketDoc/Dans-Mathmaxx
type: dan-chat
- path: PocketDoc/Dans-Benchmaxx
type: dan-chat
- path: PocketDoc/Dans-Codemaxx
type: dan-chat
- path: PocketDoc/Dans-Taskmaxx
type: dan-chat
- path: PocketDoc/Dans-Toolmaxx
type: dan-chat
- path: PocketDoc/Dans-ASCIIMaxx-Wordart
type: dan-chat
- path: PocketDoc/Dans-Prosemaxx-Gutenberg
type: dan-chat
- path: PocketDoc/Dans-Prosemaxx-Cowriter
type: dan-chat
- path: PocketDoc/Dans-Prosemaxx-Cowriter-S
type: dan-chat
- path: PocketDoc/Dans-Prosemaxx-Adventure
type: dan-chat
- path: PocketDoc/DansTestYard
type: completion
chat_template: chatml
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
dataset_prepared_path: ./l3.1-8b-dans-instruct-data
val_set_size: 0.01
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
gradient_checkpointing: true
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0000015
cosine_min_lr_ratio:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 0.00000001
weight_decay: 0.05
train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: false
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug: false
deepspeed:
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|im_end|>
```
# l3.1-8b-dans-instruct
This model is a fine-tuned version of [Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML](https://huggingface.co/Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5811
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 97
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7656 | 0.0031 | 1 | 1.7463 |
| 1.7434 | 0.1009 | 33 | 1.7351 |
| 1.6519 | 0.2018 | 66 | 1.6830 |
| 1.679 | 0.3027 | 99 | 1.6342 |
| 1.6336 | 0.4036 | 132 | 1.6168 |
| 1.5928 | 0.5044 | 165 | 1.6063 |
| 1.6581 | 0.6053 | 198 | 1.5996 |
| 1.646 | 0.7062 | 231 | 1.5957 |
| 1.6064 | 0.8071 | 264 | 1.5924 |
| 1.5328 | 0.9080 | 297 | 1.5899 |
| 1.6039 | 1.0069 | 330 | 1.5881 |
| 1.6226 | 1.1080 | 363 | 1.5867 |
| 1.4879 | 1.2090 | 396 | 1.5855 |
| 1.6646 | 1.3101 | 429 | 1.5844 |
| 1.5874 | 1.4112 | 462 | 1.5836 |
| 1.4901 | 1.5123 | 495 | 1.5830 |
| 1.6148 | 1.6133 | 528 | 1.5825 |
| 1.3064 | 1.7144 | 561 | 1.5822 |
| 1.4952 | 1.8155 | 594 | 1.5817 |
| 1.6338 | 1.9165 | 627 | 1.5816 |
| 1.7102 | 2.0156 | 660 | 1.5815 |
| 1.6408 | 2.1165 | 693 | 1.5813 |
| 1.3856 | 2.2175 | 726 | 1.5813 |
| 1.537 | 2.3184 | 759 | 1.5813 |
| 1.6205 | 2.4194 | 792 | 1.5812 |
| 1.7095 | 2.5203 | 825 | 1.5811 |
| 1.4987 | 2.6213 | 858 | 1.5811 |
| 1.6141 | 2.7222 | 891 | 1.5811 |
| 1.5662 | 2.8232 | 924 | 1.5811 |
| 1.5975 | 2.9241 | 957 | 1.5811 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1