File size: 5,487 Bytes
28dbce5 39dded1 28dbce5 39dded1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
---
library_name: transformers
base_model: Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML
tags:
- generated_from_trainer
model-index:
- name: l3.1-8b-dans-instruct
results: []
license: apache-2.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code:
# wandb configuration
wandb_project: l3.1-8b-dans-instruct
wandb_watch:
wandb_run_id:
wandb_log_model:
# where to save the finished model to
output_dir: ./l3.1-8b-dans-instruct
# dataset settings (local or huggingface repo)
datasets:
- path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
type: sharegpt
conversation: chatml
- path: AquaV/Energetic-Materials-Sharegpt
type: sharegpt
conversation: chatml
- path: AquaV/Chemical-Biological-Safety-Applications-Sharegpt
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Mathmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Benchmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Codemaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Taskmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-ASCIIMaxx-Wordart
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Prosemaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Toolmaxx
type: sharegpt
conversation: chatml
chat_template: chatml
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
dataset_prepared_path: ./l3.1-8b-dans-instruct-data
val_set_size: 0.03
lora_model_dir:
sequence_len: 8192
# use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
sample_packing: true
eval_sample_packing: true
# you can set these packing optimizations AFTER starting a training at least once.
# The trainer will provide recommended values for these values.
pad_to_sequence_len: true
#rope_scaling:
#type: # linear | dynamic
#factor: # float (2 for 2x)
adapter: # blank for full finetune
lora_r: 64
lora_alpha: 64
lora_dropout: 0.2
lora_target_linear: True
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lora_modules_to_save:
- embed_tokens
- lm_head
lora_fan_in_fan_out:
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0000015
cosine_min_lr_ratio:
train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: false
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 15
eval_steps: 25
# save_steps: 100
saves_per_epoch: 3
debug: false
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|im_end|>
```
</details><br>
# l3.1-8b-dans-instruct
This model is a fine-tuned version of [Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML](https://huggingface.co/Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7432
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0783 | 0.0077 | 1 | 1.0298 |
| 0.8528 | 0.1931 | 25 | 0.8603 |
| 0.7776 | 0.3862 | 50 | 0.7925 |
| 0.7089 | 0.5793 | 75 | 0.7697 |
| 0.6868 | 0.7724 | 100 | 0.7584 |
| 0.7158 | 0.9655 | 125 | 0.7524 |
| 0.6938 | 1.1566 | 150 | 0.7488 |
| 0.733 | 1.3499 | 175 | 0.7464 |
| 0.7956 | 1.5433 | 200 | 0.7450 |
| 0.6886 | 1.7366 | 225 | 0.7442 |
| 0.9065 | 1.9299 | 250 | 0.7437 |
| 0.7851 | 2.1210 | 275 | 0.7434 |
| 0.7256 | 2.3142 | 300 | 0.7433 |
| 0.7832 | 2.5074 | 325 | 0.7432 |
| 0.7317 | 2.7006 | 350 | 0.7432 |
| 0.7112 | 2.8937 | 375 | 0.7432 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |