File size: 2,203 Bytes
e27e15f 17dcc5e 84dd277 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e e27e15f 17dcc5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: wav2vec2-xls-r-300m_phone-mfa_english
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m_phone-mfa_english
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0777
- Per: 0.0169
- Learning Rate: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Per | Rate |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 5.9243 | 1.0 | 892 | 2.9797 | 0.8601 | 5e-05 |
| 0.7497 | 2.0 | 1784 | 0.1314 | 0.0288 | 0.0001 |
| 0.2391 | 3.0 | 2676 | 0.0994 | 0.0229 | 0.0001 |
| 0.1839 | 4.0 | 3568 | 0.0905 | 0.0211 | 0.0001 |
| 0.1562 | 5.0 | 4460 | 0.0879 | 0.0197 | 0.0001 |
| 0.14 | 6.0 | 5352 | 0.0872 | 0.0186 | 5e-05 |
| 0.1256 | 7.0 | 6244 | 0.0827 | 0.0178 | 0.0000 |
| 0.1149 | 8.0 | 7136 | 0.0774 | 0.0173 | 0.0000 |
| 0.1083 | 9.0 | 8028 | 0.0786 | 0.0170 | 0.0000 |
| 0.1027 | 10.0 | 8920 | 0.0777 | 0.0169 | 0.0 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|