xiaowenbin commited on
Commit
7db2d26
1 Parent(s): 182c8c2

init commit

Browse files
.gitattributes CHANGED
@@ -26,3 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
26
  *.zip filter=lfs diff=lfs merge=lfs -text
27
  *.zstandard filter=lfs diff=lfs merge=lfs -text
28
  *tfevents* filter=lfs diff=lfs merge=lfs -text
29
+ pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ - semantic-search
9
+ - chinese
10
+ ---
11
+
12
+ # DMetaSoul/sbert-chinese-qmc-finance-v1-distill
13
+
14
+ 此模型是之前[开源金融问题匹配模型](https://huggingface.co/DMetaSoul/sbert-chinese-qmc-finance-v1)的蒸馏轻量化版本(仅4层 BERT),适用于**金融领域的问题匹配**场景,比如:
15
+
16
+ - 8千日利息400元? VS 10000元日利息多少钱
17
+ - 提前还款是按全额计息 VS 还款扣款不成功怎么还款?
18
+ - 为什么我借钱交易失败 VS 刚申请的借款为什么会失败
19
+
20
+ 离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 5% 左右(具体结果详见下文评估小节)。
21
+
22
+ # Usage
23
+
24
+ ## 1. Sentence-Transformers
25
+
26
+ 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装:
27
+
28
+ ```
29
+ pip install -U sentence-transformers
30
+ ```
31
+
32
+ 然后使用下面的代码来载入该模型并进行文本表征向量的提取:
33
+
34
+ ```python
35
+ from sentence_transformers import SentenceTransformer
36
+ sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]
37
+
38
+ model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-finance-v1-distill')
39
+ embeddings = model.encode(sentences)
40
+ print(embeddings)
41
+ ```
42
+
43
+ ## 2. HuggingFace Transformers
44
+
45
+ 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取:
46
+
47
+ ```python
48
+ from transformers import AutoTokenizer, AutoModel
49
+ import torch
50
+
51
+
52
+ #Mean Pooling - Take attention mask into account for correct averaging
53
+ def mean_pooling(model_output, attention_mask):
54
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
55
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
56
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
57
+
58
+
59
+ # Sentences we want sentence embeddings for
60
+ sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]
61
+
62
+ # Load model from HuggingFace Hub
63
+ tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1-distill')
64
+ model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1-distill')
65
+
66
+ # Tokenize sentences
67
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
68
+
69
+ # Compute token embeddings
70
+ with torch.no_grad():
71
+ model_output = model(**encoded_input)
72
+
73
+ # Perform pooling. In this case, mean pooling.
74
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
75
+
76
+ print("Sentence embeddings:")
77
+ print(sentence_embeddings)
78
+ ```
79
+
80
+ ## Evaluation
81
+
82
+ 这里主要跟蒸馏前对应的 teacher 模型作了对比:
83
+
84
+ *性能:*
85
+
86
+ | | Teacher | Student | Gap |
87
+ | ---------- | --------------------- | ------------------- | ----- |
88
+ | Model | BERT-12-layers (102M) | BERT-4-layers (45M) | 0.44x |
89
+ | Cost | 23s | 12s | -47% |
90
+ | Latency | 38ms | 20ms | -47% |
91
+ | Throughput | 418 sentence/s | 791 sentence/s | 1.9x |
92
+
93
+ *精度:*
94
+
95
+ | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | **Avg** |
96
+ | -------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | ------- |
97
+ | **Teacher** | 77.40% | 74.55% | 36.00% | 75.75% | 73.24% | 11.58% | 54.75% | 57.61% |
98
+ | **Student** | 75.02% | 71.99% | 32.40% | 67.06% | 66.35% | 7.57% | 49.26% | 52.80% |
99
+ | **Gap** (abs.) | - | - | - | - | - | - | - | -4.81% |
100
+
101
+ *基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256*
102
+
103
+ ## Citing & Authors
104
+
105
+ E-mail: [email protected]
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "releases/sbert-chinese-qmc-finance-v1-distill/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 4,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.16.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 21128
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.1.0",
4
+ "transformers": "4.16.0",
5
+ "pytorch": "1.10.2"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7695f0057b19b353edf6d92db9028b4e0e76b2372bce89f6e6b5a89f82fa7d7
3
+ size 182288973
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "releases/sbert-chinese-qmc-finance-v1-distill/", "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff