Retrain PPO model for LunarLander-v2 v3
Browse files- PPO-LunarLander-v2.zip +2 -2
- PPO-LunarLander-v2/data +40 -22
- PPO-LunarLander-v2/policy.optimizer.pth +2 -2
- PPO-LunarLander-v2/policy.pth +2 -2
- PPO-LunarLander-v2/system_info.txt +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
PPO-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cbbb9d5b03a670bbc3748f887ff422b87be42177146711e8c32fc407b8566da
|
3 |
+
size 857818
|
PPO-LunarLander-v2/data
CHANGED
@@ -4,22 +4,40 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
-
"policy_kwargs": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
@@ -42,12 +60,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +74,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +84,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
@@ -83,10 +101,10 @@
|
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f03879ae440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f03879ae4d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f03879ae560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f03879ae5f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f03879ae680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f03879ae710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f03879ae7a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f03879ae830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f03879ae8c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f03879ae950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f03879ae9e0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f03879f6990>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVbAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS4BLgEuAZYwCdmaUXZQoS4BLgEuAZXVhdS4=",
|
25 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
26 |
+
"net_arch": [
|
27 |
+
{
|
28 |
+
"pi": [
|
29 |
+
128,
|
30 |
+
128,
|
31 |
+
128
|
32 |
+
],
|
33 |
+
"vf": [
|
34 |
+
128,
|
35 |
+
128,
|
36 |
+
128
|
37 |
+
]
|
38 |
+
}
|
39 |
+
]
|
40 |
+
},
|
41 |
"observation_space": {
|
42 |
":type:": "<class 'gym.spaces.box.Box'>",
|
43 |
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
|
|
60 |
"_np_random": null
|
61 |
},
|
62 |
"n_envs": 16,
|
63 |
+
"num_timesteps": 1212416,
|
64 |
+
"_total_timesteps": 1200000,
|
65 |
"_num_timesteps_at_start": 0,
|
66 |
"seed": null,
|
67 |
"action_noise": null,
|
68 |
+
"start_time": 1651697997.104268,
|
69 |
"learning_rate": 0.0003,
|
70 |
"tensorboard_log": null,
|
71 |
"lr_schedule": {
|
|
|
74 |
},
|
75 |
"_last_obs": {
|
76 |
":type:": "<class 'numpy.ndarray'>",
|
77 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZoq7yUrrw/xjCXvrRypD5lT7Y8VrsSPQAAAAAAAAAATXulPc9bND3/TR6+FeMUvinECz0O95W9AAAAAAAAAABAQSg+CtONP52F2T6a6Tu/n7xtPsppSj4AAAAAAAAAAM2thL2c+Tw+e5AjPoTIAr+j32q9P06CPgAAAAAAAAAAANC2uxBmwz8TNNy8RYKzvE9Fzzv6scQ7AAAAAAAAAABmqTO9J8+KPozSxD12fia/1tRVOwiiIT4AAAAAAAAAAIBChj3fQ5E86Sieviu1ab5pQ129WtH+vAAAAAAAAAAAjVGCPk8tOT/uzcE+B48ev3+c0j70fA8+AAAAAAAAAADNyEQ83R5tP51ggD3/lH2/pjXPvKu/H7sAAAAAAAAAAO3VFL6mypw/c4GfvlDPP7/qJ42+bWFQvgAAAAAAAAAAWq1WPjseAj8Oaha9MN3mvpdabT76Zuu9AAAAAAAAAAB6DgQ+ljuePpoctLw/pAi/6I3lPZvJab0AAAAAAAAAAGZJRT3D8Qq6Q65fM5mYWa9pP7+43lm0swAAgD8AAIA/JoW4vRRik7oYuAe+tvU9tvlaKjuiTak1AAAAAAAAgD/A3sQ9JFc2PNsTjL0AjEu+iJOdPbY7ljoAAAAAAAAAAM2fp7xUtgk/tyKXPJXJcL9dl4i9MryGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
78 |
},
|
79 |
"_last_episode_starts": {
|
80 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
84 |
"_episode_num": 0,
|
85 |
"use_sde": false,
|
86 |
"sde_sample_freq": -1,
|
87 |
+
"_current_progress_remaining": -0.010346666666666726,
|
88 |
"ep_info_buffer": {
|
89 |
":type:": "<class 'collections.deque'>",
|
90 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQSybOSRIckCUhpRSlIwBbJRLgIwBdJRHQLORKEovzvt1fZQoaAZoCWgPQwirBfaYiP9wQJSGlFKUaBVLi2gWR0CzkTZxBE8adX2UKGgGaAloD0MIa9RDNLrsbkCUhpRSlGgVS6BoFkdAs5E7hUBGQXV9lChoBmgJaA9DCEvIBz1blnJAlIaUUpRoFUvbaBZHQLORPMFlkH51fZQoaAZoCWgPQwh8LH3oQoJwQJSGlFKUaBVLoWgWR0CzkT7OqvNedX2UKGgGaAloD0MICeHRxlE8ckCUhpRSlGgVS+loFkdAs5Fip84Pw3V9lChoBmgJaA9DCFRyTuwhZHFAlIaUUpRoFUuiaBZHQLORZDm8ujB1fZQoaAZoCWgPQwhens4V5YJyQJSGlFKUaBVLyWgWR0CzkWqouPFOdX2UKGgGaAloD0MIg1K0ci+BckCUhpRSlGgVS5ZoFkdAs5FtTHbRGHV9lChoBmgJaA9DCEFIFjCB3HFAlIaUUpRoFUu7aBZHQLORjXMQmNR1fZQoaAZoCWgPQwiYNEbr6HVwQJSGlFKUaBVLkGgWR0CzkZxKxs2vdX2UKGgGaAloD0MIjbeVXtsMc0CUhpRSlGgVS8ZoFkdAs5GdVghKUXV9lChoBmgJaA9DCBIwurw5gnFAlIaUUpRoFUuwaBZHQLORwlByCFt1fZQoaAZoCWgPQwh4Y0FhkGlxQJSGlFKUaBVLp2gWR0CzkdPX5FgEdX2UKGgGaAloD0MIQGmoUQiYckCUhpRSlGgVS8toFkdAs5Ho31jAi3V9lChoBmgJaA9DCMhAnl2+ynBAlIaUUpRoFUubaBZHQLOR9oybhFV1fZQoaAZoCWgPQwhDHVa45QtyQJSGlFKUaBVLlmgWR0CzkfaIWP92dX2UKGgGaAloD0MIRGraxTQBcUCUhpRSlGgVS61oFkdAs5H9+EytWHV9lChoBmgJaA9DCLSQgNFl+nJAlIaUUpRoFUu7aBZHQLOSAEWIoE11fZQoaAZoCWgPQwjuXYO+tBtxQJSGlFKUaBVLiWgWR0CzkhGhmGucdX2UKGgGaAloD0MIJJpAEUs6cECUhpRSlGgVS7VoFkdAs5IXzg/C7HV9lChoBmgJaA9DCEIHXcJhaXFAlIaUUpRoFUvDaBZHQLOSKoduHet1fZQoaAZoCWgPQwgNqg1ORKpuQJSGlFKUaBVLu2gWR0CzkkSBTXJ6dX2UKGgGaAloD0MIFasGYe6/cECUhpRSlGgVS45oFkdAs5JFKwpvxnV9lChoBmgJaA9DCAgcCTQYiXJAlIaUUpRoFUu2aBZHQLOSSJ8fFJh1fZQoaAZoCWgPQwgcYVER57tzQJSGlFKUaBVL02gWR0CzkmKSTyJ9dX2UKGgGaAloD0MIqyNHOsO6cUCUhpRSlGgVS7NoFkdAs5JwTtb9qHV9lChoBmgJaA9DCA97oYDtJXNAlIaUUpRoFUvHaBZHQLOSelfJFLF1fZQoaAZoCWgPQwicGmg+Z1BxQJSGlFKUaBVLvmgWR0CzkqImTkhidX2UKGgGaAloD0MIDeIDO37YcECUhpRSlGgVS69oFkdAs5KiHck+o3V9lChoBmgJaA9DCBfzc0PT03NAlIaUUpRoFUvAaBZHQLOSziuuA7R1fZQoaAZoCWgPQwi2LF+XYU9yQJSGlFKUaBVLsGgWR0CzktLiEQGwdX2UKGgGaAloD0MI/gsEAXKMcECUhpRSlGgVS7loFkdAs5LT4i5d4XV9lChoBmgJaA9DCFERp5Ose3BAlIaUUpRoFUutaBZHQLOS49sJpnJ1fZQoaAZoCWgPQwhB8s6hTOByQJSGlFKUaBVL0WgWR0CzkvKN+9amdX2UKGgGaAloD0MInMJKBVWWckCUhpRSlGgVS8xoFkdAs5L0j9n9N3V9lChoBmgJaA9DCEYHJGHfMHFAlIaUUpRoFUu3aBZHQLOS94o7V8V1fZQoaAZoCWgPQwjNr+YAQSByQJSGlFKUaBVLw2gWR0Czkxf0yxiYdX2UKGgGaAloD0MIAihGlszYcUCUhpRSlGgVS7RoFkdAs5MgrBj4H3V9lChoBmgJaA9DCIUjSKUYJHFAlIaUUpRoFUubaBZHQLOTLqbBoEl1fZQoaAZoCWgPQwgA4q5exYRxQJSGlFKUaBVLlWgWR0CzkzHGn4widX2UKGgGaAloD0MIsp/FUmQFc0CUhpRSlGgVS9FoFkdAs5NDPWxyGXV9lChoBmgJaA9DCKeSAaAKd3JAlIaUUpRoFUu7aBZHQLOTRvGIbfh1fZQoaAZoCWgPQwhA3UCBd3BvQJSGlFKUaBVLlGgWR0Czk1ZiuuA7dX2UKGgGaAloD0MI8bvplh38c0CUhpRSlGgVS+JoFkdAs5NaSTyJ9HV9lChoBmgJaA9DCJNTO8PUEnFAlIaUUpRoFUuuaBZHQLOTdkC3gDR1fZQoaAZoCWgPQwgd5PVgErtxQJSGlFKUaBVLh2gWR0Czk4WiHqNZdX2UKGgGaAloD0MIdAtdiYBickCUhpRSlGgVS5xoFkdAs5OQl2NedHV9lChoBmgJaA9DCNEEilhEEHFAlIaUUpRoFUunaBZHQLOTmWxyGSJ1fZQoaAZoCWgPQwiSPNf3YThvQJSGlFKUaBVLjWgWR0Czk54yCWeIdX2UKGgGaAloD0MIJAuYwC3YbkCUhpRSlGgVS5xoFkdAs5OzZPEbYXV9lChoBmgJaA9DCJZdMLimZXJAlIaUUpRoFUu9aBZHQLOTuN8ma6V1fZQoaAZoCWgPQwh3LLZJRQxyQJSGlFKUaBVLtGgWR0Czk8s90RvndX2UKGgGaAloD0MI7N/1mXPLcECUhpRSlGgVS6RoFkdAs5Pewt8NQXV9lChoBmgJaA9DCMh9q3Ui4HFAlIaUUpRoFUufaBZHQLOT4gJTl1d1fZQoaAZoCWgPQwig3/dv3rRxQJSGlFKUaBVLlmgWR0Czk/s0YTCcdX2UKGgGaAloD0MIx5v8Fh1hcECUhpRSlGgVS41oFkdAs5QJk8Rtg3V9lChoBmgJaA9DCLzK2qZ4dXFAlIaUUpRoFUuhaBZHQLOUDV1wHZ91fZQoaAZoCWgPQwh1IsFUs9txQJSGlFKUaBVLuGgWR0CzlBDySV4YdX2UKGgGaAloD0MIZHYWvVOmcECUhpRSlGgVS6RoFkdAs5QiAmReTnV9lChoBmgJaA9DCJijx+9tcnJAlIaUUpRoFUvDaBZHQLOUIenhsIp1fZQoaAZoCWgPQwgFTraBu7VxQJSGlFKUaBVLlmgWR0CzlD4VqN6xdX2UKGgGaAloD0MI8IgK1Y2cckCUhpRSlGgVS7xoFkdAs5Rc052hZnV9lChoBmgJaA9DCMJpwYs+lXNAlIaUUpRoFUuraBZHQLOUYUvPC2t1fZQoaAZoCWgPQwiXVkPiXnxwQJSGlFKUaBVLp2gWR0CzlGoAXEZSdX2UKGgGaAloD0MIWmQ7308Tb0CUhpRSlGgVS5NoFkdAs5Rsm2LHdXV9lChoBmgJaA9DCBh7L77oLnFAlIaUUpRoFUuHaBZHQLOUcaLXL/11fZQoaAZoCWgPQwhAaD18GR5wQJSGlFKUaBVLtWgWR0CzlHfvBrN4dX2UKGgGaAloD0MI5BQdySVFc0CUhpRSlGgVS7JoFkdAs5SPMcIZ63V9lChoBmgJaA9DCHKkMzDyhXFAlIaUUpRoFUuZaBZHQLOUy/pdKNB1fZQoaAZoCWgPQwhvZvSjofxwQJSGlFKUaBVLrmgWR0CzlNlLi++NdX2UKGgGaAloD0MIYB4y5cNvcUCUhpRSlGgVS81oFkdAs5TmtITXa3V9lChoBmgJaA9DCDLJyFlYfHJAlIaUUpRoFUu/aBZHQLOVCPi1iON1fZQoaAZoCWgPQwgfvHZpgxxzQJSGlFKUaBVLwWgWR0CzlQhoM8YAdX2UKGgGaAloD0MIH2rbMMrPckCUhpRSlGgVS7hoFkdAs5URoQFs6HV9lChoBmgJaA9DCA/wpIULp3BAlIaUUpRoFUuiaBZHQLOVFTJQtSR1fZQoaAZoCWgPQwhHrptSHrNzQJSGlFKUaBVLumgWR0CzlRTKPn0TdX2UKGgGaAloD0MIV0EMdC1jc0CUhpRSlGgVS/hoFkdAs5UiHdoFmnV9lChoBmgJaA9DCHmvWplwUnFAlIaUUpRoFUugaBZHQLOVM8scyWR1fZQoaAZoCWgPQwjpYP2fg+txQJSGlFKUaBVLq2gWR0CzlUg4OtnxdX2UKGgGaAloD0MIiQtAo/Q1cECUhpRSlGgVS69oFkdAs5VUD9wWFnV9lChoBmgJaA9DCIs2x7nNnnJAlIaUUpRoFUu/aBZHQLOVYzCUHIJ1fZQoaAZoCWgPQwjfv3lxoo9xQJSGlFKUaBVL0WgWR0CzlWqQV9F4dX2UKGgGaAloD0MIcLGiBpO9ckCUhpRSlGgVS8ZoFkdAs5V158jRlnV9lChoBmgJaA9DCGNfsvGgNXRAlIaUUpRoFUu7aBZHQLOVfp5eJHl1fZQoaAZoCWgPQwgXnSy13gByQJSGlFKUaBVLo2gWR0CzlZaxC6YmdX2UKGgGaAloD0MIV2DI6pbXcECUhpRSlGgVS49oFkdAs5W/EKmbb3V9lChoBmgJaA9DCN2XM9uVwHFAlIaUUpRoFUuwaBZHQLOVvo99tuV1fZQoaAZoCWgPQwi/EHLevw1yQJSGlFKUaBVLmmgWR0Czlc3E/B3zdX2UKGgGaAloD0MIE0n0MgqKcUCUhpRSlGgVS6VoFkdAs5XP642CNHV9lChoBmgJaA9DCK/QB8sY33FAlIaUUpRoFUuzaBZHQLOV6YpDu0F1fZQoaAZoCWgPQwiJDKt4Yx1yQJSGlFKUaBVL32gWR0Czle6FdszmdX2UKGgGaAloD0MIU1vqIG8ycECUhpRSlGgVS7FoFkdAs5X5W0Z3tHV9lChoBmgJaA9DCAlU/yASLXJAlIaUUpRoFUvcaBZHQLOWFaN+9al1fZQoaAZoCWgPQwicGJKTiSRyQJSGlFKUaBVLuGgWR0CzlheJLuhLdX2UKGgGaAloD0MIc2iR7fwecUCUhpRSlGgVS55oFkdAs5YZFVktmXV9lChoBmgJaA9DCPxUFRoI9HNAlIaUUpRoFUuxaBZHQLOWJC9RJmN1fZQoaAZoCWgPQwiR7Xw/NdxwQJSGlFKUaBVLiWgWR0CzliwLRa5gdX2UKGgGaAloD0MIdjQO9Tsvc0CUhpRSlGgVS6FoFkdAs5Y0nlXA/XV9lChoBmgJaA9DCIvBw7SvRXRAlIaUUpRoFUu2aBZHQLOWRV4X40x1ZS4="
|
91 |
},
|
92 |
"ep_success_buffer": {
|
93 |
":type:": "<class 'collections.deque'>",
|
94 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
95 |
},
|
96 |
+
"_n_updates": 370,
|
97 |
"n_steps": 2048,
|
98 |
"gamma": 0.99,
|
99 |
"gae_lambda": 0.95,
|
|
|
101 |
"vf_coef": 0.5,
|
102 |
"max_grad_norm": 0.5,
|
103 |
"batch_size": 64,
|
104 |
+
"n_epochs": 10,
|
105 |
"clip_range": {
|
106 |
":type:": "<class 'function'>",
|
107 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
108 |
},
|
109 |
"clip_range_vf": null,
|
110 |
"normalize_advantage": true,
|
PPO-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:339abab385f24a8ded0aef0331984963d414e24c10e0de91c4462210534ae12c
|
3 |
+
size 560197
|
PPO-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:904bf56c8e96f407ed432e18229c86a3ac850f850ae2c6ace21cf71e59ae49db
|
3 |
+
size 281141
|
PPO-LunarLander-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PD
|
|
2 |
Python: 3.7.13
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
-
GPU Enabled:
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
|
|
2 |
Python: 3.7.13
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: False
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 290.85 +/- 20.01
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb704ca6f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb704c2f050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb704c2f0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb704c2f170>", "_build": "<function ActorCriticPolicy._build at 0x7fb704c2f200>", "forward": "<function ActorCriticPolicy.forward at 0x7fb704c2f290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb704c2f320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb704c2f3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb704c2f440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb704c2f4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb704c2f560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb704c70c00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651674468.6962564, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0Qvz2bABI/rHovPVJU7r62er89yr6ivQAAAAAAAAAAAATvPMhctj9uNfI+RERMPWi3tLysBUQ7AAAAAAAAAAAa6m29p1RQP57qwb0H/AC/qjMgOf1RJzwAAAAAAAAAAHMqAb5SKKE6ql4NPhWiNLxEz4y8xCYgPQAAAAAAAIA/JryVPlFcUr05Kqw8b5U9u0vitL6nIQe8AACAPwAAgD/mc4k9JzOWPqJU5LxUsjK+mm0+PLap1jwAAAAAAAAAALDr1z6IP6G82qkXPst0lLw3S1W+D7GNvQAAgD8AAIA/uh2wPjO5+j6pK549qn7avqosGT5wa629AAAAAAAAAADeRcG+ZNcaP72iLL56kAq/0g0dvspmmb0AAAAAAAAAAM0NubyF4525eRoANBGa6i8OLpM675vCswAAgD8AAIA/1hTNvnq4bj6GP8Q9En6dvnz+gr1BzA29AAAAAAAAAADa24+94YCUum8wJLyzInA7tmh/ObvjHrwAAAAAAAAAAMDAUT5uv8S80AX0PfHCZryWmTG+lyAzvQAAgD8AAIA/s/cdvidIMj/7anK+4l8evwE1NL2i9gi9AAAAAAAAAAAA7WE96DNUP91R9z1SfzK/ZHqwPZFRAz0AAAAAAAAAAObkIj5o5IA/ou4fPofLJL8fYLk9sAn+PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbOo8Kv4rbUCUhpRSlIwBbJRL7owBdJRHQKcMawRoRI11fZQoaAZoCWgPQwgNGY9Sid5nQJSGlFKUaBVNnwFoFkdApwzhxo7FKnV9lChoBmgJaA9DCGcng6OkPXFAlIaUUpRoFU0AAWgWR0CnDXOw5eZ5dX2UKGgGaAloD0MIFJZ4QNlEEMCUhpRSlGgVS3poFkdApw1z5mAbynV9lChoBmgJaA9DCFbSim+oXWxAlIaUUpRoFUv+aBZHQKcOC7/XGwR1fZQoaAZoCWgPQwg6kzZV96dvQJSGlFKUaBVL1WgWR0CnDhmu9vjwdX2UKGgGaAloD0MI6bmFroTHcECUhpRSlGgVTU8BaBZHQKcOM15Sm651fZQoaAZoCWgPQwhjmulep7RsQJSGlFKUaBVNIgJoFkdApw5f4Glhw3V9lChoBmgJaA9DCNj0oKCUgm5AlIaUUpRoFUvNaBZHQKcPAA7xNIt1fZQoaAZoCWgPQwgmUS/4NDcQQJSGlFKUaBVLZGgWR0CnD13d9Dx9dX2UKGgGaAloD0MIQUXVr3RLcUCUhpRSlGgVS+loFkdApw/Xci4axXV9lChoBmgJaA9DCALWql2TS3BAlIaUUpRoFUvfaBZHQKcP8rqdH2B1fZQoaAZoCWgPQwhbIhecwR1DQJSGlFKUaBVLymgWR0CnEDhKtga4dX2UKGgGaAloD0MI+8kYH2bZRkCUhpRSlGgVS7loFkdApxB6mQ8wH3V9lChoBmgJaA9DCFmGONZFdHBAlIaUUpRoFU0NAWgWR0CnEPSvLX+VdX2UKGgGaAloD0MIGESkph18cECUhpRSlGgVS7NoFkdApxH5mukk8nV9lChoBmgJaA9DCELqdvZVFnFAlIaUUpRoFU0DAWgWR0CnEsHc+JP7dX2UKGgGaAloD0MIEynN5nECbkCUhpRSlGgVS+RoFkdApxLJceKba3V9lChoBmgJaA9DCFyRmKAGOm9AlIaUUpRoFUvmaBZHQKcS9t0FKTV1fZQoaAZoCWgPQwg7AU2EjdBuQJSGlFKUaBVNBwFoFkdApxODLr5ZbXV9lChoBmgJaA9DCJwaaD7ne25AlIaUUpRoFUvuaBZHQKcUIlk6Lfl1fZQoaAZoCWgPQwixv+yePE1TQJSGlFKUaBVN6ANoFkdApxR6OmzjWHV9lChoBmgJaA9DCNZUFoXd4m5AlIaUUpRoFUvbaBZHQKcUo7rcCYF1fZQoaAZoCWgPQwgG9S1zOlVqQJSGlFKUaBVNjwFoFkdApxSzneSB9XV9lChoBmgJaA9DCLWJk/tdIHBAlIaUUpRoFUvvaBZHQKcVH2criER1fZQoaAZoCWgPQwjOxd/2hCdxQJSGlFKUaBVNDQFoFkdApxUo482aUnV9lChoBmgJaA9DCMGtu3kq8G5AlIaUUpRoFUvZaBZHQKcVo3azu4R1fZQoaAZoCWgPQwgP7zmw3DxwQJSGlFKUaBVNGAFoFkdApxYc6eXiSHV9lChoBmgJaA9DCJ2DZ0JTrXBAlIaUUpRoFUv5aBZHQKcXON3GGVR1fZQoaAZoCWgPQwiT/fM0IGRxQJSGlFKUaBVL4WgWR0CnF5mTLW7OdX2UKGgGaAloD0MInIwqwzh8c0CUhpRSlGgVTRgBaBZHQKcYrIJ7b+N1fZQoaAZoCWgPQwh2+6wyk6FxQJSGlFKUaBVL3mgWR0CnGLkytV7ydX2UKGgGaAloD0MICqAYWbIbb0CUhpRSlGgVS8hoFkdApxi/GGVRk3V9lChoBmgJaA9DCMVYpl+iRGtAlIaUUpRoFU2qAmgWR0CnGgvV/c33dX2UKGgGaAloD0MIvk7qy9IuD8CUhpRSlGgVS+hoFkdApxoYScslLXV9lChoBmgJaA9DCN/DJcedUhZAlIaUUpRoFUvNaBZHQKcaJA+IM0B1fZQoaAZoCWgPQwjt1jIZjl5tQJSGlFKUaBVNXgFoFkdApxpZXlr/KnV9lChoBmgJaA9DCEvJchLKf2FAlIaUUpRoFU3aAWgWR0CnGr2MCLdfdX2UKGgGaAloD0MIuCBbli/pcUCUhpRSlGgVTS0BaBZHQKcbEbedkJ91fZQoaAZoCWgPQwgBomDG1L9yQJSGlFKUaBVNawFoFkdApxtCF23az3V9lChoBmgJaA9DCE3YfjLGzm1AlIaUUpRoFUvraBZHQKcbR8XvYvp1fZQoaAZoCWgPQwgRje4g9h5zQJSGlFKUaBVNUgFoFkdApxuITwlSj3V9lChoBmgJaA9DCITTghc9AnFAlIaUUpRoFUv3aBZHQKcca6Ae7tl1fZQoaAZoCWgPQwjeyhKdZTVwQJSGlFKUaBVL/GgWR0CnHNWZJCjUdX2UKGgGaAloD0MIFeP8TSiGQkCUhpRSlGgVS81oFkdApxzbwSamXXV9lChoBmgJaA9DCGMOgo5WlTJAlIaUUpRoFUucaBZHQKcdB+n62v11fZQoaAZoCWgPQwi3XWiukwFyQJSGlFKUaBVL3GgWR0CnHkiGvfTDdX2UKGgGaAloD0MImpfD7jtVcECUhpRSlGgVTQUBaBZHQKcfF08vEjx1fZQoaAZoCWgPQwjJAiZw68JeQJSGlFKUaBVN6ANoFkdApx9arvLHMnV9lChoBmgJaA9DCIOKql/pmHBAlIaUUpRoFU0FAWgWR0CnH2DcEeQudX2UKGgGaAloD0MI/67PnPXBb0CUhpRSlGgVS/toFkdApyAUZzgdfnV9lChoBmgJaA9DCIdsIF1sMXBAlIaUUpRoFU0EAWgWR0CnIEcfeUILdX2UKGgGaAloD0MI0LcFS/W0ckCUhpRSlGgVS+xoFkdApyEeXXyy2XV9lChoBmgJaA9DCG+5+rEJ8HFAlIaUUpRoFU0mAWgWR0CnIUo+nqFAdX2UKGgGaAloD0MISMX/HdE2bUCUhpRSlGgVTV0BaBZHQKchh4vexfR1fZQoaAZoCWgPQwgTRrOyfUxwQJSGlFKUaBVNTAFoFkdApyGHtv4ub3V9lChoBmgJaA9DCGoWaHdIk29AlIaUUpRoFUvraBZHQKchlhvze411fZQoaAZoCWgPQwisyVNWU2VxQJSGlFKUaBVNBQFoFkdApyI3Vf/m1nV9lChoBmgJaA9DCFCOAkTBT1bAlIaUUpRoFU3rAWgWR0CnIorbpNbkdX2UKGgGaAloD0MIAALWql3/QkCUhpRSlGgVS7RoFkdApyKkQf6oEXV9lChoBmgJaA9DCF8JpMSuAW9AlIaUUpRoFU0vAWgWR0CnIs1w5vLpdX2UKGgGaAloD0MIUmLX9va1a0CUhpRSlGgVTQMCaBZHQKci6A3kxRF1fZQoaAZoCWgPQwivB5Pi4/VuQJSGlFKUaBVL7WgWR0CnJH2M85jpdX2UKGgGaAloD0MIJo+n5QcmNUCUhpRSlGgVS79oFkdApySbf779AHV9lChoBmgJaA9DCGACt+5mpHFAlIaUUpRoFU00AWgWR0CnJSNKh+OPdX2UKGgGaAloD0MI9YHknUPbcECUhpRSlGgVS9VoFkdApyUndIoVmHV9lChoBmgJaA9DCM1aCki7/3FAlIaUUpRoFU04AWgWR0CnJTn9m6GydX2UKGgGaAloD0MICHdn7fbYcUCUhpRSlGgVTWoBaBZHQKclOfe1rqN1fZQoaAZoCWgPQwh4exACsltxQJSGlFKUaBVNDgFoFkdApyVI4bS7XnV9lChoBmgJaA9DCKyQ8pPqnHFAlIaUUpRoFUuyaBZHQKcmEW2w3YN1fZQoaAZoCWgPQwgDJQUWwHNuQJSGlFKUaBVL/2gWR0CnJhZmZmZmdX2UKGgGaAloD0MIKbFre/vYcECUhpRSlGgVS81oFkdApyZFE7W/anV9lChoBmgJaA9DCMfUXdnFE3FAlIaUUpRoFUvsaBZHQKcmalFc6eZ1fZQoaAZoCWgPQwgpzeZxmPlvQJSGlFKUaBVNGQFoFkdApyaXs7dSEXV9lChoBmgJaA9DCJxpwvaTtGxAlIaUUpRoFU2/A2gWR0CnJ8oHcDbKdX2UKGgGaAloD0MIH0lJD0NvNkCUhpRSlGgVS5ZoFkdApyfkOkLx7XV9lChoBmgJaA9DCKWFyyrsm3JAlIaUUpRoFU0yAWgWR0CnJ/+RgZ0kdX2UKGgGaAloD0MIlphnJS32bkCUhpRSlGgVS9toFkdApyiSZQYUFnV9lChoBmgJaA9DCDGale1DsW5AlIaUUpRoFU1DAWgWR0CnKJ+HBUJfdX2UKGgGaAloD0MIMC/APvq1ckCUhpRSlGgVTaIBaBZHQKcpHFDv3Jx1fZQoaAZoCWgPQwifkJ23saRtQJSGlFKUaBVL6mgWR0CnKW/L1VYIdX2UKGgGaAloD0MIKzBkdavcbUCUhpRSlGgVTRQBaBZHQKcpjK8tf5V1fZQoaAZoCWgPQwi2ateENMlxQJSGlFKUaBVL8WgWR0CnKaNxVAAydX2UKGgGaAloD0MI9s5oq5KTbECUhpRSlGgVS/RoFkdApym/lQuVX3V9lChoBmgJaA9DCAbZsnwdGnFAlIaUUpRoFU0LAWgWR0CnKf2yC4BndX2UKGgGaAloD0MItB8pIsMFcUCUhpRSlGgVS9VoFkdApyn+xD9fkXV9lChoBmgJaA9DCDI7i95pC3BAlIaUUpRoFUvjaBZHQKcqWiUPhAJ1fZQoaAZoCWgPQwjAlIEDmihyQJSGlFKUaBVL2mgWR0CnKli2tuDSdX2UKGgGaAloD0MIOUVHcvmfPUCUhpRSlGgVS9loFkdApyp5hlUZN3V9lChoBmgJaA9DCPrt68B5s3NAlIaUUpRoFU0AAWgWR0CnKp0KZ2IPdX2UKGgGaAloD0MIzR/T2jRWckCUhpRSlGgVTQsBaBZHQKcsf5FgDzR1fZQoaAZoCWgPQwi6EoHq35RxQJSGlFKUaBVNEAFoFkdApyy5KUVzqHV9lChoBmgJaA9DCAoQBTNmv3BAlIaUUpRoFUvtaBZHQKctSRKYiPh1fZQoaAZoCWgPQwiK6NfWTwNJQJSGlFKUaBVLwWgWR0CnLWiMPz4DdX2UKGgGaAloD0MI8yGoGr1KLUCUhpRSlGgVS9poFkdApy16y2QXAXV9lChoBmgJaA9DCFxYN94drGxAlIaUUpRoFU0ZAWgWR0CnLZ/MGHHndX2UKGgGaAloD0MISgwCK4cqOkCUhpRSlGgVS9FoFkdApy24nH/953V9lChoBmgJaA9DCFA4u7VMFXBAlIaUUpRoFU0nAWgWR0CnLfD94u9OdX2UKGgGaAloD0MItDo5QzEycECUhpRSlGgVTVwBaBZHQKcuUOYIBzV1fZQoaAZoCWgPQwiRRZp4Ry5xQJSGlFKUaBVNJQFoFkdApy79iKBNEnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 224, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 14, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f03879ae440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f03879ae4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f03879ae560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f03879ae5f0>", "_build": "<function ActorCriticPolicy._build at 0x7f03879ae680>", "forward": "<function ActorCriticPolicy.forward at 0x7f03879ae710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f03879ae7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f03879ae830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f03879ae8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f03879ae950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f03879ae9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f03879f6990>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS4BLgEuAZYwCdmaUXZQoS4BLgEuAZXVhdS4=", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [128, 128, 128], "vf": [128, 128, 128]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1212416, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651697997.104268, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZoq7yUrrw/xjCXvrRypD5lT7Y8VrsSPQAAAAAAAAAATXulPc9bND3/TR6+FeMUvinECz0O95W9AAAAAAAAAABAQSg+CtONP52F2T6a6Tu/n7xtPsppSj4AAAAAAAAAAM2thL2c+Tw+e5AjPoTIAr+j32q9P06CPgAAAAAAAAAAANC2uxBmwz8TNNy8RYKzvE9Fzzv6scQ7AAAAAAAAAABmqTO9J8+KPozSxD12fia/1tRVOwiiIT4AAAAAAAAAAIBChj3fQ5E86Sieviu1ab5pQ129WtH+vAAAAAAAAAAAjVGCPk8tOT/uzcE+B48ev3+c0j70fA8+AAAAAAAAAADNyEQ83R5tP51ggD3/lH2/pjXPvKu/H7sAAAAAAAAAAO3VFL6mypw/c4GfvlDPP7/qJ42+bWFQvgAAAAAAAAAAWq1WPjseAj8Oaha9MN3mvpdabT76Zuu9AAAAAAAAAAB6DgQ+ljuePpoctLw/pAi/6I3lPZvJab0AAAAAAAAAAGZJRT3D8Qq6Q65fM5mYWa9pP7+43lm0swAAgD8AAIA/JoW4vRRik7oYuAe+tvU9tvlaKjuiTak1AAAAAAAAgD/A3sQ9JFc2PNsTjL0AjEu+iJOdPbY7ljoAAAAAAAAAAM2fp7xUtgk/tyKXPJXJcL9dl4i9MryGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQSybOSRIckCUhpRSlIwBbJRLgIwBdJRHQLORKEovzvt1fZQoaAZoCWgPQwirBfaYiP9wQJSGlFKUaBVLi2gWR0CzkTZxBE8adX2UKGgGaAloD0MIa9RDNLrsbkCUhpRSlGgVS6BoFkdAs5E7hUBGQXV9lChoBmgJaA9DCEvIBz1blnJAlIaUUpRoFUvbaBZHQLORPMFlkH51fZQoaAZoCWgPQwh8LH3oQoJwQJSGlFKUaBVLoWgWR0CzkT7OqvNedX2UKGgGaAloD0MICeHRxlE8ckCUhpRSlGgVS+loFkdAs5Fip84Pw3V9lChoBmgJaA9DCFRyTuwhZHFAlIaUUpRoFUuiaBZHQLORZDm8ujB1fZQoaAZoCWgPQwhens4V5YJyQJSGlFKUaBVLyWgWR0CzkWqouPFOdX2UKGgGaAloD0MIg1K0ci+BckCUhpRSlGgVS5ZoFkdAs5FtTHbRGHV9lChoBmgJaA9DCEFIFjCB3HFAlIaUUpRoFUu7aBZHQLORjXMQmNR1fZQoaAZoCWgPQwiYNEbr6HVwQJSGlFKUaBVLkGgWR0CzkZxKxs2vdX2UKGgGaAloD0MIjbeVXtsMc0CUhpRSlGgVS8ZoFkdAs5GdVghKUXV9lChoBmgJaA9DCBIwurw5gnFAlIaUUpRoFUuwaBZHQLORwlByCFt1fZQoaAZoCWgPQwh4Y0FhkGlxQJSGlFKUaBVLp2gWR0CzkdPX5FgEdX2UKGgGaAloD0MIQGmoUQiYckCUhpRSlGgVS8toFkdAs5Ho31jAi3V9lChoBmgJaA9DCMhAnl2+ynBAlIaUUpRoFUubaBZHQLOR9oybhFV1fZQoaAZoCWgPQwhDHVa45QtyQJSGlFKUaBVLlmgWR0CzkfaIWP92dX2UKGgGaAloD0MIRGraxTQBcUCUhpRSlGgVS61oFkdAs5H9+EytWHV9lChoBmgJaA9DCLSQgNFl+nJAlIaUUpRoFUu7aBZHQLOSAEWIoE11fZQoaAZoCWgPQwjuXYO+tBtxQJSGlFKUaBVLiWgWR0CzkhGhmGucdX2UKGgGaAloD0MIJJpAEUs6cECUhpRSlGgVS7VoFkdAs5IXzg/C7HV9lChoBmgJaA9DCEIHXcJhaXFAlIaUUpRoFUvDaBZHQLOSKoduHet1fZQoaAZoCWgPQwgNqg1ORKpuQJSGlFKUaBVLu2gWR0CzkkSBTXJ6dX2UKGgGaAloD0MIFasGYe6/cECUhpRSlGgVS45oFkdAs5JFKwpvxnV9lChoBmgJaA9DCAgcCTQYiXJAlIaUUpRoFUu2aBZHQLOSSJ8fFJh1fZQoaAZoCWgPQwgcYVER57tzQJSGlFKUaBVL02gWR0CzkmKSTyJ9dX2UKGgGaAloD0MIqyNHOsO6cUCUhpRSlGgVS7NoFkdAs5JwTtb9qHV9lChoBmgJaA9DCA97oYDtJXNAlIaUUpRoFUvHaBZHQLOSelfJFLF1fZQoaAZoCWgPQwicGmg+Z1BxQJSGlFKUaBVLvmgWR0CzkqImTkhidX2UKGgGaAloD0MIDeIDO37YcECUhpRSlGgVS69oFkdAs5KiHck+o3V9lChoBmgJaA9DCBfzc0PT03NAlIaUUpRoFUvAaBZHQLOSziuuA7R1fZQoaAZoCWgPQwi2LF+XYU9yQJSGlFKUaBVLsGgWR0CzktLiEQGwdX2UKGgGaAloD0MI/gsEAXKMcECUhpRSlGgVS7loFkdAs5LT4i5d4XV9lChoBmgJaA9DCFERp5Ose3BAlIaUUpRoFUutaBZHQLOS49sJpnJ1fZQoaAZoCWgPQwhB8s6hTOByQJSGlFKUaBVL0WgWR0CzkvKN+9amdX2UKGgGaAloD0MInMJKBVWWckCUhpRSlGgVS8xoFkdAs5L0j9n9N3V9lChoBmgJaA9DCEYHJGHfMHFAlIaUUpRoFUu3aBZHQLOS94o7V8V1fZQoaAZoCWgPQwjNr+YAQSByQJSGlFKUaBVLw2gWR0Czkxf0yxiYdX2UKGgGaAloD0MIAihGlszYcUCUhpRSlGgVS7RoFkdAs5MgrBj4H3V9lChoBmgJaA9DCIUjSKUYJHFAlIaUUpRoFUubaBZHQLOTLqbBoEl1fZQoaAZoCWgPQwgA4q5exYRxQJSGlFKUaBVLlWgWR0CzkzHGn4widX2UKGgGaAloD0MIsp/FUmQFc0CUhpRSlGgVS9FoFkdAs5NDPWxyGXV9lChoBmgJaA9DCKeSAaAKd3JAlIaUUpRoFUu7aBZHQLOTRvGIbfh1fZQoaAZoCWgPQwhA3UCBd3BvQJSGlFKUaBVLlGgWR0Czk1ZiuuA7dX2UKGgGaAloD0MI8bvplh38c0CUhpRSlGgVS+JoFkdAs5NaSTyJ9HV9lChoBmgJaA9DCJNTO8PUEnFAlIaUUpRoFUuuaBZHQLOTdkC3gDR1fZQoaAZoCWgPQwgd5PVgErtxQJSGlFKUaBVLh2gWR0Czk4WiHqNZdX2UKGgGaAloD0MIdAtdiYBickCUhpRSlGgVS5xoFkdAs5OQl2NedHV9lChoBmgJaA9DCNEEilhEEHFAlIaUUpRoFUunaBZHQLOTmWxyGSJ1fZQoaAZoCWgPQwiSPNf3YThvQJSGlFKUaBVLjWgWR0Czk54yCWeIdX2UKGgGaAloD0MIJAuYwC3YbkCUhpRSlGgVS5xoFkdAs5OzZPEbYXV9lChoBmgJaA9DCJZdMLimZXJAlIaUUpRoFUu9aBZHQLOTuN8ma6V1fZQoaAZoCWgPQwh3LLZJRQxyQJSGlFKUaBVLtGgWR0Czk8s90RvndX2UKGgGaAloD0MI7N/1mXPLcECUhpRSlGgVS6RoFkdAs5Pewt8NQXV9lChoBmgJaA9DCMh9q3Ui4HFAlIaUUpRoFUufaBZHQLOT4gJTl1d1fZQoaAZoCWgPQwig3/dv3rRxQJSGlFKUaBVLlmgWR0Czk/s0YTCcdX2UKGgGaAloD0MIx5v8Fh1hcECUhpRSlGgVS41oFkdAs5QJk8Rtg3V9lChoBmgJaA9DCLzK2qZ4dXFAlIaUUpRoFUuhaBZHQLOUDV1wHZ91fZQoaAZoCWgPQwh1IsFUs9txQJSGlFKUaBVLuGgWR0CzlBDySV4YdX2UKGgGaAloD0MIZHYWvVOmcECUhpRSlGgVS6RoFkdAs5QiAmReTnV9lChoBmgJaA9DCJijx+9tcnJAlIaUUpRoFUvDaBZHQLOUIenhsIp1fZQoaAZoCWgPQwgFTraBu7VxQJSGlFKUaBVLlmgWR0CzlD4VqN6xdX2UKGgGaAloD0MI8IgK1Y2cckCUhpRSlGgVS7xoFkdAs5Rc052hZnV9lChoBmgJaA9DCMJpwYs+lXNAlIaUUpRoFUuraBZHQLOUYUvPC2t1fZQoaAZoCWgPQwiXVkPiXnxwQJSGlFKUaBVLp2gWR0CzlGoAXEZSdX2UKGgGaAloD0MIWmQ7308Tb0CUhpRSlGgVS5NoFkdAs5Rsm2LHdXV9lChoBmgJaA9DCBh7L77oLnFAlIaUUpRoFUuHaBZHQLOUcaLXL/11fZQoaAZoCWgPQwhAaD18GR5wQJSGlFKUaBVLtWgWR0CzlHfvBrN4dX2UKGgGaAloD0MI5BQdySVFc0CUhpRSlGgVS7JoFkdAs5SPMcIZ63V9lChoBmgJaA9DCHKkMzDyhXFAlIaUUpRoFUuZaBZHQLOUy/pdKNB1fZQoaAZoCWgPQwhvZvSjofxwQJSGlFKUaBVLrmgWR0CzlNlLi++NdX2UKGgGaAloD0MIYB4y5cNvcUCUhpRSlGgVS81oFkdAs5TmtITXa3V9lChoBmgJaA9DCDLJyFlYfHJAlIaUUpRoFUu/aBZHQLOVCPi1iON1fZQoaAZoCWgPQwgfvHZpgxxzQJSGlFKUaBVLwWgWR0CzlQhoM8YAdX2UKGgGaAloD0MIH2rbMMrPckCUhpRSlGgVS7hoFkdAs5URoQFs6HV9lChoBmgJaA9DCA/wpIULp3BAlIaUUpRoFUuiaBZHQLOVFTJQtSR1fZQoaAZoCWgPQwhHrptSHrNzQJSGlFKUaBVLumgWR0CzlRTKPn0TdX2UKGgGaAloD0MIV0EMdC1jc0CUhpRSlGgVS/hoFkdAs5UiHdoFmnV9lChoBmgJaA9DCHmvWplwUnFAlIaUUpRoFUugaBZHQLOVM8scyWR1fZQoaAZoCWgPQwjpYP2fg+txQJSGlFKUaBVLq2gWR0CzlUg4OtnxdX2UKGgGaAloD0MIiQtAo/Q1cECUhpRSlGgVS69oFkdAs5VUD9wWFnV9lChoBmgJaA9DCIs2x7nNnnJAlIaUUpRoFUu/aBZHQLOVYzCUHIJ1fZQoaAZoCWgPQwjfv3lxoo9xQJSGlFKUaBVL0WgWR0CzlWqQV9F4dX2UKGgGaAloD0MIcLGiBpO9ckCUhpRSlGgVS8ZoFkdAs5V158jRlnV9lChoBmgJaA9DCGNfsvGgNXRAlIaUUpRoFUu7aBZHQLOVfp5eJHl1fZQoaAZoCWgPQwgXnSy13gByQJSGlFKUaBVLo2gWR0CzlZaxC6YmdX2UKGgGaAloD0MIV2DI6pbXcECUhpRSlGgVS49oFkdAs5W/EKmbb3V9lChoBmgJaA9DCN2XM9uVwHFAlIaUUpRoFUuwaBZHQLOVvo99tuV1fZQoaAZoCWgPQwi/EHLevw1yQJSGlFKUaBVLmmgWR0Czlc3E/B3zdX2UKGgGaAloD0MIE0n0MgqKcUCUhpRSlGgVS6VoFkdAs5XP642CNHV9lChoBmgJaA9DCK/QB8sY33FAlIaUUpRoFUuzaBZHQLOV6YpDu0F1fZQoaAZoCWgPQwiJDKt4Yx1yQJSGlFKUaBVL32gWR0Czle6FdszmdX2UKGgGaAloD0MIU1vqIG8ycECUhpRSlGgVS7FoFkdAs5X5W0Z3tHV9lChoBmgJaA9DCAlU/yASLXJAlIaUUpRoFUvcaBZHQLOWFaN+9al1fZQoaAZoCWgPQwicGJKTiSRyQJSGlFKUaBVLuGgWR0CzlheJLuhLdX2UKGgGaAloD0MIc2iR7fwecUCUhpRSlGgVS55oFkdAs5YZFVktmXV9lChoBmgJaA9DCPxUFRoI9HNAlIaUUpRoFUuxaBZHQLOWJC9RJmN1fZQoaAZoCWgPQwiR7Xw/NdxwQJSGlFKUaBVLiWgWR0CzliwLRa5gdX2UKGgGaAloD0MIdjQO9Tsvc0CUhpRSlGgVS6FoFkdAs5Y0nlXA/XV9lChoBmgJaA9DCIvBw7SvRXRAlIaUUpRoFUu2aBZHQLOWRV4X40x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 370, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa5aa18162453e484b5ccd0576342a9db92b940d1bb8f30b78cb7a6f06888322
|
3 |
+
size 213910
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 290.8454147555641, "std_reward": 20.005885358340613, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T21:48:10.951025"}
|