DBMe commited on
Commit
41d89d0
1 Parent(s): b7b0719

Add files using upload-large-folder tool

Browse files
README.md ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ model-index:
4
+ - name: WizardLM-2-8x22B
5
+ results:
6
+ - task:
7
+ type: text-generation
8
+ name: Text Generation
9
+ dataset:
10
+ name: IFEval (0-Shot)
11
+ type: HuggingFaceH4/ifeval
12
+ args:
13
+ num_few_shot: 0
14
+ metrics:
15
+ - type: inst_level_strict_acc and prompt_level_strict_acc
16
+ value: 52.72
17
+ name: strict accuracy
18
+ source:
19
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
20
+ name: Open LLM Leaderboard
21
+ - task:
22
+ type: text-generation
23
+ name: Text Generation
24
+ dataset:
25
+ name: BBH (3-Shot)
26
+ type: BBH
27
+ args:
28
+ num_few_shot: 3
29
+ metrics:
30
+ - type: acc_norm
31
+ value: 48.58
32
+ name: normalized accuracy
33
+ source:
34
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
35
+ name: Open LLM Leaderboard
36
+ - task:
37
+ type: text-generation
38
+ name: Text Generation
39
+ dataset:
40
+ name: MATH Lvl 5 (4-Shot)
41
+ type: hendrycks/competition_math
42
+ args:
43
+ num_few_shot: 4
44
+ metrics:
45
+ - type: exact_match
46
+ value: 22.28
47
+ name: exact match
48
+ source:
49
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
50
+ name: Open LLM Leaderboard
51
+ - task:
52
+ type: text-generation
53
+ name: Text Generation
54
+ dataset:
55
+ name: GPQA (0-shot)
56
+ type: Idavidrein/gpqa
57
+ args:
58
+ num_few_shot: 0
59
+ metrics:
60
+ - type: acc_norm
61
+ value: 17.56
62
+ name: acc_norm
63
+ source:
64
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
65
+ name: Open LLM Leaderboard
66
+ - task:
67
+ type: text-generation
68
+ name: Text Generation
69
+ dataset:
70
+ name: MuSR (0-shot)
71
+ type: TAUR-Lab/MuSR
72
+ args:
73
+ num_few_shot: 0
74
+ metrics:
75
+ - type: acc_norm
76
+ value: 14.54
77
+ name: acc_norm
78
+ source:
79
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
80
+ name: Open LLM Leaderboard
81
+ - task:
82
+ type: text-generation
83
+ name: Text Generation
84
+ dataset:
85
+ name: MMLU-PRO (5-shot)
86
+ type: TIGER-Lab/MMLU-Pro
87
+ config: main
88
+ split: test
89
+ args:
90
+ num_few_shot: 5
91
+ metrics:
92
+ - type: acc
93
+ value: 39.96
94
+ name: accuracy
95
+ source:
96
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
97
+ name: Open LLM Leaderboard
98
+ ---
99
+
100
+
101
+
102
+ <p style="font-size:20px;" align="center">
103
+ 🏠 <a href="https://wizardlm.github.io/WizardLM2" target="_blank">WizardLM-2 Release Blog</a> </p>
104
+ <p align="center">
105
+ 🤗 <a href="https://huggingface.co/collections/microsoft/wizardlm-2-661d403f71e6c8257dbd598a" target="_blank">HF Repo</a> •🐱 <a href="https://github.com/victorsungo/WizardLM/tree/main/WizardLM-2" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> • 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> • 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
106
+ </p>
107
+ <p align="center">
108
+ 👋 Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
109
+ </p>
110
+
111
+ ## See [here](https://huggingface.co/lucyknada/microsoft_WizardLM-2-7B) for the WizardLM-2-7B re-upload.
112
+
113
+ ## News 🔥🔥🔥 [2024/04/15]
114
+
115
+ We introduce and opensource WizardLM-2, our next generation state-of-the-art large language models,
116
+ which have improved performance on complex chat, multilingual, reasoning and agent.
117
+ New family includes three cutting-edge models: WizardLM-2 8x22B, WizardLM-2 70B, and WizardLM-2 7B.
118
+
119
+ - WizardLM-2 8x22B is our most advanced model, demonstrates highly competitive performance compared to those leading proprietary works
120
+ and consistently outperforms all the existing state-of-the-art opensource models.
121
+ - WizardLM-2 70B reaches top-tier reasoning capabilities and is the first choice in the same size.
122
+ - WizardLM-2 7B is the fastest and achieves comparable performance with existing 10x larger opensource leading models.
123
+
124
+ For more details of WizardLM-2 please read our [release blog post](https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/) and upcoming paper.
125
+
126
+
127
+ ## Model Details
128
+
129
+ * **Model name**: WizardLM-2 8x22B
130
+ * **Developed by**: WizardLM@Microsoft AI
131
+ * **Model type**: Mixture of Experts (MoE)
132
+ * **Base model**: [mistral-community/Mixtral-8x22B-v0.1](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1)
133
+ * **Parameters**: 141B
134
+ * **Language(s)**: Multilingual
135
+ * **Blog**: [Introducing WizardLM-2](https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/)
136
+ * **Repository**: [https://github.com/nlpxucan/WizardLM](https://github.com/nlpxucan/WizardLM)
137
+ * **Paper**: WizardLM-2 (Upcoming)
138
+ * **License**: Apache2.0
139
+
140
+
141
+ ## Model Capacities
142
+
143
+
144
+ **MT-Bench**
145
+
146
+ We also adopt the automatic MT-Bench evaluation framework based on GPT-4 proposed by lmsys to assess the performance of models.
147
+ The WizardLM-2 8x22B even demonstrates highly competitive performance compared to the most advanced proprietary models.
148
+ Meanwhile, WizardLM-2 7B and WizardLM-2 70B are all the top-performing models among the other leading baselines at 7B to 70B model scales.
149
+
150
+ <p align="center" width="100%">
151
+ <a ><img src="https://web.archive.org/web/20240415175608im_/https://wizardlm.github.io/WizardLM2/static/images/mtbench.png" alt="MTBench" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
152
+ </p>
153
+
154
+
155
+ **Human Preferences Evaluation**
156
+
157
+ We carefully collected a complex and challenging set consisting of real-world instructions, which includes main requirements of humanity, such as writing, coding, math, reasoning, agent, and multilingual.
158
+ We report the win:loss rate without tie:
159
+
160
+ - WizardLM-2 8x22B is just slightly falling behind GPT-4-1106-preview, and significantly stronger than Command R Plus and GPT4-0314.
161
+ - WizardLM-2 70B is better than GPT4-0613, Mistral-Large, and Qwen1.5-72B-Chat.
162
+ - WizardLM-2 7B is comparable with Qwen1.5-32B-Chat, and surpasses Qwen1.5-14B-Chat and Starling-LM-7B-beta.
163
+
164
+ <p align="center" width="100%">
165
+ <a ><img src="https://web.archive.org/web/20240415163303im_/https://wizardlm.github.io/WizardLM2/static/images/winall.png" alt="Win" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
166
+ </p>
167
+
168
+
169
+
170
+
171
+
172
+ ## Method Overview
173
+ We built a **fully AI powered synthetic training system** to train WizardLM-2 models, please refer to our [blog](https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/) for more details of this system.
174
+
175
+ <p align="center" width="100%">
176
+ <a ><img src="https://web.archive.org/web/20240415163303im_/https://wizardlm.github.io/WizardLM2/static/images/exp_1.png" alt="Method" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
177
+ </p>
178
+
179
+
180
+
181
+
182
+
183
+ ## Usage
184
+
185
+ ❗<b>Note for model system prompts usage:</b>
186
+
187
+
188
+ <b>WizardLM-2</b> adopts the prompt format from <b>Vicuna</b> and supports **multi-turn** conversation. The prompt should be as following:
189
+
190
+ ```
191
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful,
192
+ detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>
193
+ USER: Who are you? ASSISTANT: I am WizardLM.</s>......
194
+ ```
195
+
196
+ <b> Inference WizardLM-2 Demo Script</b>
197
+
198
+ We provide a WizardLM-2 inference demo [code](https://github.com/nlpxucan/WizardLM/tree/main/demo) on our github.
199
+
200
+
201
+
202
+
203
+
204
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
205
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_alpindale__WizardLM-2-8x22B)
206
+
207
+ | Metric |Value|
208
+ |-------------------|----:|
209
+ |Avg. |32.61|
210
+ |IFEval (0-Shot) |52.72|
211
+ |BBH (3-Shot) |48.58|
212
+ |MATH Lvl 5 (4-Shot)|22.28|
213
+ |GPQA (0-shot) |17.56|
214
+ |MuSR (0-shot) |14.54|
215
+ |MMLU-PRO (5-shot) |39.96|
216
+
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 6144,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 16384,
13
+ "max_position_embeddings": 65536,
14
+ "model_type": "mixtral",
15
+ "num_attention_heads": 48,
16
+ "num_experts_per_tok": 2,
17
+ "num_hidden_layers": 56,
18
+ "num_key_value_heads": 8,
19
+ "num_local_experts": 8,
20
+ "output_router_logits": false,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_theta": 1000000,
23
+ "router_aux_loss_coef": 0.001,
24
+ "router_jitter_noise": 0.0,
25
+ "sliding_window": null,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.36.2",
29
+ "use_cache": false,
30
+ "vocab_size": 32000,
31
+ "quantization_config": {
32
+ "quant_method": "exl2",
33
+ "version": "0.2.1",
34
+ "bits": 2.6,
35
+ "head_bits": 6,
36
+ "calibration": {
37
+ "rows": 115,
38
+ "length": 2048,
39
+ "dataset": "(default)"
40
+ }
41
+ }
42
+ }
config.yml ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Sample YAML file for configuration.
2
+ # Comment and uncomment values as needed.
3
+ # Every value has a default within the application.
4
+ # This file serves to be a drop in for config.yml
5
+
6
+ # Unless specified in the comments, DO NOT put these options in quotes!
7
+ # You can use https://www.yamllint.com/ if you want to check your YAML formatting.
8
+
9
+ # Options for networking
10
+ network:
11
+ # The IP to host on (default: 127.0.0.1).
12
+ # Use 0.0.0.0 to expose on all network adapters.
13
+ host: 0.0.0.0
14
+
15
+ # The port to host on (default: 5000).
16
+ port: 5000
17
+
18
+ # Disable HTTP token authentication with requests.
19
+ # WARNING: This will make your instance vulnerable!
20
+ # Turn on this option if you are ONLY connecting from localhost.
21
+ disable_auth: false
22
+
23
+ # Send tracebacks over the API (default: False).
24
+ # NOTE: Only enable this for debug purposes.
25
+ send_tracebacks: false
26
+
27
+ # Select API servers to enable (default: ["OAI"]).
28
+ # Possible values: OAI, Kobold.
29
+ api_servers: ["oai"]
30
+
31
+ # Options for logging
32
+ logging:
33
+ # Enable prompt logging (default: False).
34
+ log_prompt: false
35
+
36
+ # Enable generation parameter logging (default: False).
37
+ log_generation_params: false
38
+
39
+ # Enable request logging (default: False).
40
+ # NOTE: Only use this for debugging!
41
+ log_requests: false
42
+
43
+ # Options for model overrides and loading
44
+ # Please read the comments to understand how arguments are handled
45
+ # between initial and API loads
46
+ model:
47
+ # Directory to look for models (default: models).
48
+ # Windows users, do NOT put this path in quotes!
49
+ model_dir: models
50
+
51
+ # Allow direct loading of models from a completion or chat completion request (default: False).
52
+ inline_model_loading: false
53
+
54
+ # Sends dummy model names when the models endpoint is queried.
55
+ # Enable this if the client is looking for specific OAI models.
56
+ use_dummy_models: false
57
+
58
+ # An initial model to load.
59
+ # Make sure the model is located in the model directory!
60
+ # REQUIRED: This must be filled out to load a model on startup.
61
+ model_name: WizardLM-2-8x22B_exl2_2.6bpw
62
+
63
+ # Names of args to use as a fallback for API load requests (default: []).
64
+ # For example, if you always want cache_mode to be Q4 instead of on the inital model load, add "cache_mode" to this array.
65
+ # Example: ['max_seq_len', 'cache_mode'].
66
+ use_as_default: []
67
+
68
+ # Max sequence length (default: Empty).
69
+ # Fetched from the model's base sequence length in config.json by default.
70
+ max_seq_len: 32768
71
+
72
+ # Overrides base model context length (default: Empty).
73
+ # WARNING: Don't set this unless you know what you're doing!
74
+ # Again, do NOT use this for configuring context length, use max_seq_len above ^
75
+ override_base_seq_len:
76
+
77
+ # Load model with tensor parallelism.
78
+ # Falls back to autosplit if GPU split isn't provided.
79
+ # This ignores the gpu_split_auto value.
80
+ tensor_parallel: false
81
+
82
+ # Automatically allocate resources to GPUs (default: True).
83
+ # Not parsed for single GPU users.
84
+ gpu_split_auto: true
85
+
86
+ # Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0).
87
+ # Represented as an array of MB per GPU.
88
+ autosplit_reserve: [0]
89
+
90
+ # An integer array of GBs of VRAM to split between GPUs (default: []).
91
+ # Used with tensor parallelism.
92
+ gpu_split: []
93
+
94
+ # Rope scale (default: 1.0).
95
+ # Same as compress_pos_emb.
96
+ # Use if the model was trained on long context with rope.
97
+ # Leave blank to pull the value from the model.
98
+ rope_scale: 1.0
99
+
100
+ # Rope alpha (default: None).
101
+ # Same as alpha_value. Set to "auto" to auto-calculate.
102
+ # Leaving this value blank will either pull from the model or auto-calculate.
103
+ rope_alpha:
104
+
105
+ # Enable different cache modes for VRAM savings (default: FP16).
106
+ # Possible values: 'FP16', 'Q8', 'Q6', 'Q4'.
107
+ cache_mode: Q4
108
+
109
+ # Size of the prompt cache to allocate (default: max_seq_len).
110
+ # Must be a multiple of 256 and can't be less than max_seq_len.
111
+ # For CFG, set this to 2 * max_seq_len.
112
+ cache_size:
113
+
114
+ # Chunk size for prompt ingestion (default: 2048).
115
+ # A lower value reduces VRAM usage but decreases ingestion speed.
116
+ # NOTE: Effects vary depending on the model.
117
+ # An ideal value is between 512 and 4096.
118
+ chunk_size: 1024
119
+
120
+ # Set the maximum number of prompts to process at one time (default: None/Automatic).
121
+ # Automatically calculated if left blank.
122
+ # NOTE: Only available for Nvidia ampere (30 series) and above GPUs.
123
+ max_batch_size:
124
+
125
+ # Set the prompt template for this model. (default: None)
126
+ # If empty, attempts to look for the model's chat template.
127
+ # If a model contains multiple templates in its tokenizer_config.json,
128
+ # set prompt_template to the name of the template you want to use.
129
+ # NOTE: Only works with chat completion message lists!
130
+ prompt_template:
131
+
132
+ # Number of experts to use per token.
133
+ # Fetched from the model's config.json if empty.
134
+ # NOTE: For MoE models only.
135
+ # WARNING: Don't set this unless you know what you're doing!
136
+ num_experts_per_token:
137
+
138
+ # Enables fasttensors to possibly increase model loading speeds (default: False).
139
+ fasttensors: true
140
+
141
+ # Options for draft models (speculative decoding)
142
+ # This will use more VRAM!
143
+ draft_model:
144
+ # Directory to look for draft models (default: models)
145
+ draft_model_dir: models
146
+
147
+ # An initial draft model to load.
148
+ # Ensure the model is in the model directory.
149
+ draft_model_name:
150
+
151
+ # Rope scale for draft models (default: 1.0).
152
+ # Same as compress_pos_emb.
153
+ # Use if the draft model was trained on long context with rope.
154
+ draft_rope_scale: 1.0
155
+
156
+ # Rope alpha for draft models (default: None).
157
+ # Same as alpha_value. Set to "auto" to auto-calculate.
158
+ # Leaving this value blank will either pull from the model or auto-calculate.
159
+ draft_rope_alpha:
160
+
161
+ # Cache mode for draft models to save VRAM (default: FP16).
162
+ # Possible values: 'FP16', 'Q8', 'Q6', 'Q4'.
163
+ draft_cache_mode: FP16
164
+
165
+ # Options for Loras
166
+ lora:
167
+ # Directory to look for LoRAs (default: loras).
168
+ lora_dir: loras
169
+
170
+ # List of LoRAs to load and associated scaling factors (default scale: 1.0).
171
+ # For the YAML file, add each entry as a YAML list:
172
+ # - name: lora1
173
+ # scaling: 1.0
174
+ loras:
175
+
176
+ # Options for embedding models and loading.
177
+ # NOTE: Embeddings requires the "extras" feature to be installed
178
+ # Install it via "pip install .[extras]"
179
+ embeddings:
180
+ # Directory to look for embedding models (default: models).
181
+ embedding_model_dir: models
182
+
183
+ # Device to load embedding models on (default: cpu).
184
+ # Possible values: cpu, auto, cuda.
185
+ # NOTE: It's recommended to load embedding models on the CPU.
186
+ # If using an AMD GPU, set this value to 'cuda'.
187
+ embeddings_device: cpu
188
+
189
+ # An initial embedding model to load on the infinity backend.
190
+ embedding_model_name:
191
+ sampling:
192
+
193
+ # Options for development and experimentation
194
+ developer:
195
+ # Skip Exllamav2 version check (default: False).
196
+ # WARNING: It's highly recommended to update your dependencies rather than enabling this flag.
197
+ unsafe_launch: false
198
+
199
+ # Disable API request streaming (default: False).
200
+ disable_request_streaming: false
201
+
202
+ # Enable the torch CUDA malloc backend (default: False).
203
+ cuda_malloc_backend: true
204
+
205
+ # Run asyncio using Uvloop or Winloop which can improve performance.
206
+ # NOTE: It's recommended to enable this, but if something breaks turn this off.
207
+ uvloop: true
208
+
209
+ # Set process to use a higher priority.
210
+ # For realtime process priority, run as administrator or sudo.
211
+ # Otherwise, the priority will be set to high.
212
+ realtime_process_priority: true
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.2"
6
+ }
huggingface-metadata.txt ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ url: https://huggingface.co/microsoft/WizardLM-2-8x22B
2
+ branch: main
3
+ download date: 2024-04-15 16:48:15
4
+ sha256sum:
5
+ 9e5cc2f91f7830364eff657b53df4f855091996cb2db7de2b69b8f11fa06be0a model-00001-of-00059.safetensors
6
+ 24dbc249686530b5bcf630c6edae25fff212900d340946fb868ebd3dd8c62851 model-00002-of-00059.safetensors
7
+ d8ebc25463564c00d8e5d3f8a08ca5ce60c0efd53dd23aecfa7a2e3b0112b941 model-00003-of-00059.safetensors
8
+ 81abed9dadae5877c49a57990fe5d8a449ed507987517728b1da7c195eacdd54 model-00004-of-00059.safetensors
9
+ 45a5914445b0d8a95e02881d342a37b7d7c69943980b373b78331cf5c406191f model-00005-of-00059.safetensors
10
+ ea96b16084f0b6fddf232343e2ea55734ec324aeaa2eb60759fca724b80e292d model-00006-of-00059.safetensors
11
+ a78d60bb853a77110a815f6a20c5819cef21bcc0b4d50e700b560be54d6f53b5 model-00007-of-00059.safetensors
12
+ ba757c9109937a28e912c10bdb18042d347c55e768ec2dc89859c0e25823fa35 model-00008-of-00059.safetensors
13
+ ab90762b6b58313c37b2d1e09a8f9ae956bc4b5d0cc52c379b0937ce752dca98 model-00009-of-00059.safetensors
14
+ 0b167436f7049226dbe7153e1ec602bf06d4cc384e5c16289e7207408c66068a model-00010-of-00059.safetensors
15
+ c4cc3a3f71b37f107b20f96d04067abbaee78f16e74196cdc68469d551bbe38c model-00011-of-00059.safetensors
16
+ b045740b8c2377430a5f42e06d9eec2606b8db45c3e5ac87a316fbc715569cc0 model-00012-of-00059.safetensors
17
+ 175977b687acd05686a22c0f2b89f0ab0afb79c03db3480fa7fd989aec786287 model-00013-of-00059.safetensors
18
+ 2703b8b32154f524baf105cb15f54ffbf134d13ccd923a30315e698fb85e54ff model-00014-of-00059.safetensors
19
+ bbe6004093d3a5e29f26c5e3f75e4e0b8a40c16498102dac31b0180746880671 model-00015-of-00059.safetensors
20
+ 54c8f475521181cb4b93031b17c2a5c08ad0de1a81b035c2864c2bce19234c21 model-00016-of-00059.safetensors
21
+ 0b4e356a83fc7e42a056d790213fee7624abc0d12b8ca113dbe734a139a99491 model-00017-of-00059.safetensors
22
+ 188a8a3611852f704dae7804b47cfabb5a2ccf6c7f19226ae4e3fce6a3aa0506 model-00018-of-00059.safetensors
23
+ 36d1e452bb1e962a83fdd712f4b018195a0a6102f378e9297291acf2d82cb3c0 model-00019-of-00059.safetensors
24
+ f99ae9d9cf903af58255d0774edec5ec1382c0d56a609108a59ce111518d40f0 model-00020-of-00059.safetensors
25
+ 1223e5b007d833bcb459b23f3d7f59f646b16acf2a1a685085389b8de2dc6128 model-00021-of-00059.safetensors
26
+ 48a99d78aaea1949ad85dce7847fa7d033173a22a58add4b2cd732410e7e15cf model-00022-of-00059.safetensors
27
+ db3c4baffbc4fc5a4eb34926e342d91fe4bcae59e0f712d06db4c2c4deb985da model-00023-of-00059.safetensors
28
+ 141a6b26fb0a959967c24629bbfcf0c970a475d7698d2125e622cb38fb385b9b model-00024-of-00059.safetensors
29
+ 433db989f798b99a87a64829f0a9d067e89daf1352cda3014e15c5414cbd33d2 model-00025-of-00059.safetensors
30
+ 6cc8f60655049f3c1cc04c74cc3f02f72a3f820dcac263b483fa8bcba026ac6c model-00026-of-00059.safetensors
31
+ 20b6cc117252f16fcb3d41f2372aca13a8f7426c13c86ad623c43cf0b96b5e72 model-00027-of-00059.safetensors
32
+ 8bbbb1329d0fbe43933a49d37dada0518609bc18cc762549c67f677051ac46e8 model-00028-of-00059.safetensors
33
+ 0734dbd916a3e5789d4338fdb053da6882fb7a6d636fd1495710557c032b5a24 model-00029-of-00059.safetensors
34
+ 01f5ace1d4086c96950f57604626a30821ff3ca6f60dddea74678d914d93dd72 model-00030-of-00059.safetensors
35
+ 8c362f13e9e0889f09bb552e57e5e7ac45e2f28510a9ad9fab5b50147b9c6dab model-00031-of-00059.safetensors
36
+ e93b983001b7b890da1a96405c630efb3eee7617482af1491822f213a6640b38 model-00032-of-00059.safetensors
37
+ 61bcaf0a63535ba8f756509e7cca4b6ce1c4b741aca01f2afba40f5c3a727cfd model-00033-of-00059.safetensors
38
+ 1c97dd5624ad3332e21c86836fc063059caab9262125a986e6f331c4ecf5aeff model-00034-of-00059.safetensors
39
+ 8e9e4be3a6296da50cc1b4af53115818aa75d266c430a6baa2f91709885d18df model-00035-of-00059.safetensors
40
+ a699b76e6a8633bd6ba0527270bb81a4c91604cd3a7118de09c9361fda3b144e model-00036-of-00059.safetensors
41
+ ff7bbbeb2f68415f368f2e99e91b905e145c87beadcf352d0311f85ec6ddaf6c model-00037-of-00059.safetensors
42
+ 2fe8533aac43a8c1c7b0885efef6a3080fdc6a61c880746c47520c25a10bf17d model-00038-of-00059.safetensors
43
+ 4846e39f398d04411859f18b2697f4e70e70ad33deeefa93135911d10c5a23e8 model-00039-of-00059.safetensors
44
+ 4b7de8e7af1d27c665f9e8dee5c904f9ee88ccd48c831361fc5999b979c16897 model-00040-of-00059.safetensors
45
+ 02c8320c607f11bbd377930a056873d84f0192d950176fc22e3c59d1dfb5995d model-00041-of-00059.safetensors
46
+ 68a8a3b2780336a8012b795aa6295fd9248c322f939e8131315a520fe4e43480 model-00042-of-00059.safetensors
47
+ d859d466ef5da5d0cf036bc6ed57fa0033d15c3921eb042d1a31617c6f0eef34 model-00043-of-00059.safetensors
48
+ 06d32c1ed652616e42fffdcce1735fad67b50a4f13397cfd030a4304ce035a08 model-00044-of-00059.safetensors
49
+ beb9181e4b827f0136d213c11a05c569e0bcb85b7e68ade06b38c5d3da2d1ae0 model-00045-of-00059.safetensors
50
+ 44a573a390174b0f0a41f8c0b198761384c46ae328a089f97d3e622468507224 model-00046-of-00059.safetensors
51
+ 32a3bc20ff1805ae3e14e0bcf7ac3a1f9c21a31fb04922d3d31e440e658c32b6 model-00047-of-00059.safetensors
52
+ 69a198153c9725aa0b6de50831b55fb0f04fc7a0f402731257836110358b7bde model-00048-of-00059.safetensors
53
+ a9d4adc81dbb3f12ec1300cb9c53bae070b7dbe41a66e30b5160841504fb5ba3 model-00049-of-00059.safetensors
54
+ 9d7cf6acb12c6907a102f9b836e3db345d2aa885493b3904084b95d0ac55c739 model-00050-of-00059.safetensors
55
+ 582322e446962d374f4b6fd5e469040d331150f7ef3d4a69fa460deded7c3ebc model-00051-of-00059.safetensors
56
+ d6fe7d0d82aa12dd5f40c083b4046ac6ef15ed0627433d63795bed9e50c55fb4 model-00052-of-00059.safetensors
57
+ af0c588e8ffe2e87ce5dee116d70ec083a3bfd2f4c4a09618d8a2791de5cd55f model-00053-of-00059.safetensors
58
+ ecda36174ea4e376919360f6e08c17d5b3d0a870469e9fd52cac0b7c8e12351e model-00054-of-00059.safetensors
59
+ 5d7c98c60576932850e8ef8945e38f24ca0f37cca895bf04c4a23d251081859c model-00055-of-00059.safetensors
60
+ 7410c9689fd0d2d384f4b2886707fb377327457937c91da914c725b7c35c2396 model-00056-of-00059.safetensors
61
+ 5c684ae59038495c44d01507e8047511db57fa720cc9997f7719fba76dbc29ee model-00057-of-00059.safetensors
62
+ b1234554df96e1f1e2a7adcef5f680e7b57e9b6ae4f4a16ceff8225b20921c5d model-00058-of-00059.safetensors
63
+ e36fa9e3f053db7a27e06f5b2804a2aa650a026a66e3f7db9efd35c5103cd9ae model-00059-of-00059.safetensors
64
+ dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 tokenizer.model
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
output-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca7fe6b12c0ccbef691e7ace8489af1f155f6d28fc9b340fdeac15895e348eb7
3
+ size 8575532528
output-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be96ba2fc6abe281dbbc156cb7bc42e34351fe8b29197de27652c301618c9a6e
3
+ size 8578903808
output-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b5196a15d7a0fc2c91e062916913a6fc5cddce2ff635adb730aefd34b1d614a
3
+ size 8583086392
output-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9d3f7755e8fc81c169f11f97daf4ac5acdf55e621282df7b1b543edae93db4f
3
+ size 8571095736
output-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:362f7f846f579d888583435fc0aca41cadc0ac1fd924e0cc124a8ca04ba15627
3
+ size 8589761752
output-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e99fd9a0b5362add62cf0c89fe08453e7136eead6fb67f095c3e6e9ee397b326
3
+ size 3231878312
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{{ messages[0]['content'].strip() }}{% else %}{% set loop_messages = messages %}{{ 'A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user\\'s questions.' }}{% endif %}{% for message in loop_messages %}{% if loop.index0 == 0 %}{% if message['role'] == 'system' or message['role'] == 'user' %}{{ ' USER: ' + message['content'].strip() }}{% else %}{{ ' ASSISTANT: ' + message['content'].strip() + eos_token }}{% endif %}{% else %}{% if message['role'] == 'system' or message['role'] == 'user' %}{{ '\nUSER: ' + message['content'].strip() }}{% else %}{{ ' ASSISTANT: ' + message['content'].strip() + eos_token }}{% endif %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ ' ASSISTANT:' }}{% endif %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "<unk>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": true
44
+ }
upload.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import HfApi
2
+ from pathlib import Path
3
+
4
+ # Define the parameters for uploading
5
+ repo_id = "DBMe/WizardLM-2-8x22B-2.6bpw-h6-exl2" # Replace with your actual repo ID
6
+ folder_path = "/home/asusws-x570-ace/programs/tabbyAPI/models/WizardLM-2-8x22B_exl2_2.6bpw/" # Replace with your folder path
7
+ repo_type = "model" # Change to "model" or "space" if applicable
8
+ revision = "main" # Optional: specify the branch or use "main"
9
+ private = False # Set to True if the repository should be private
10
+ allow_patterns = None # Optional: specify patterns of files to include
11
+ ignore_patterns = None # Optional: specify patterns of files to exclude
12
+ num_workers = 1 # Set based on your system; lower if your internet is unstable
13
+ print_report = True # Enable progress reporting
14
+ print_report_every = 60 # Report frequency in seconds
15
+
16
+ # Initialize the Hugging Face API client
17
+ api = HfApi()
18
+
19
+ # Function to upload the folder in a resumable manner
20
+ def upload_resumable():
21
+ try:
22
+ print("Starting upload process...")
23
+
24
+ # Perform the upload with the provided parameters
25
+ api.upload_large_folder(
26
+ repo_id=repo_id,
27
+ folder_path=Path(folder_path),
28
+ repo_type=repo_type,
29
+ revision=revision,
30
+ private=private,
31
+ allow_patterns=allow_patterns,
32
+ ignore_patterns=ignore_patterns,
33
+ num_workers=num_workers,
34
+ print_report=print_report,
35
+ print_report_every=print_report_every,
36
+ )
37
+
38
+ print("Upload completed successfully!")
39
+
40
+ except Exception as e:
41
+ print(f"Upload interrupted due to error: {e}")
42
+ print("You can resume the upload by running the script again.")
43
+
44
+ # Call the function to start the upload
45
+ upload_resumable()