File size: 2,236 Bytes
c9c864b
9379e34
c9c864b
 
 
 
 
3ee4870
 
a57626b
 
c9c864b
9379e34
c9c864b
 
 
 
 
 
 
 
 
 
3ee4870
c9c864b
 
 
 
 
 
ba75ac7
c9c864b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31e2197
2720c36
c9c864b
 
a57626b
 
 
 
 
 
 
 
 
 
 
 
3ee4870
ba75ac7
a57626b
 
 
31e2197
2720c36
a57626b
 
3ee4870
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python3
from diffusers import UNet2DModel, DDIMScheduler, VQModel
import torch
import PIL.Image
import numpy as np
import tqdm

seed = 3

# 1. Unroll the full loop
# ==================================================================
# load all models
unet = UNet2DModel.from_pretrained("./", subfolder="unet")
vqvae = VQModel.from_pretrained("./", subfolder="vqvae")
scheduler = DDIMScheduler.from_config("./", subfolder="scheduler")

# set to cuda
torch_device = "cuda" if torch.cuda.is_available() else "cpu"

unet.to(torch_device)
vqvae.to(torch_device)

# generate gaussian noise to be decoded
generator = torch.manual_seed(seed)
noise = torch.randn(
    (1, unet.in_channels, unet.image_size, unet.image_size),
    generator=generator,
).to(torch_device)

# set inference steps for DDIM
scheduler.set_timesteps(num_inference_steps=200)

image = noise
for t in tqdm.tqdm(scheduler.timesteps):
    # predict noise residual of previous image
    with torch.no_grad():
        residual = unet(image, t)["sample"]

    # compute previous image x_t according to DDIM formula
    prev_image = scheduler.step(residual, t, image, eta=0.0)["prev_sample"]

    # x_t-1 -> x_t
    image = prev_image

# decode image with vae
with torch.no_grad():
    image = vqvae.decode(image)

# process image
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.clamp(0, 255).numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])


# 2. Use pipeline
# ==================================================================
from diffusers import LatentDiffusionUncondPipeline
import torch
import PIL.Image
import numpy as np
import tqdm

pipeline = LatentDiffusionUncondPipeline.from_pretrained("./")

# generatae image by calling the pipeline
generator = torch.manual_seed(seed)
image = pipeline(generator=generator, num_inference_steps=200)["sample"]

# process image
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.clamp(0, 255).numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])

image_pil.save(f"generated_image_{seed}.png")