Upload 9 files
Browse files- README.md +159 -0
- configuration_teleflm.py +196 -0
- figures/._train_loss.png +0 -0
- figures/train_loss.png +0 -0
- modeling_teleflm.py +1524 -0
- special_tokens_map.json +30 -0
- tokenization_teleflm.py +403 -0
- tokenizer.model +3 -0
- tokenizer_config.json +54 -0
README.md
CHANGED
@@ -1,3 +1,162 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
|
6 |
+
# Tele-FLM
|
7 |
+
Tele-FLM (aka FLM-2) is a 52B open-sourced multilingual large language model that features a stable, efficient pre-training paradigm and enhanced factual judgement capabilities.
|
8 |
+
Built upon the decoder-only transformer architecture, it has been trained on approximately 2T tokens.
|
9 |
+
Tele-FLM demonstrates superior performances at its scale, and sometimes surpass larger models.
|
10 |
+
In addition to sharing the model weights, we provide the core designs, engineering practices, and training details, anticipating their benefits for both academic and industrial communities.
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
- **Developed by:** BAAI & TeleAI
|
15 |
+
- **Language(s):** English; Chinese; Other languages
|
16 |
+
- **License:** Apache 2.0
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
## Bias, Risks, and Limitations
|
21 |
+
|
22 |
+
Although we've made extensive efforts to thoroughly clean and filter the training corpus for the model, due to the open nature of the dataset, the model may still have picked up on some unsafe examples. Consequently, the model may still generate unexpected content, including but not limited to discrimination, bias, or offensive language. We would like to strongly advise users not to spread any unsafe content generated by the model. The project developers cannot be held responsible for any repercussions stemming from the dissemination of harmful information.
|
23 |
+
|
24 |
+
|
25 |
+
## Quick Start
|
26 |
+
|
27 |
+
Use the code below to get started with Tele-FLM.
|
28 |
+
|
29 |
+
```python
|
30 |
+
import torch
|
31 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained('CofeAI/Tele-FLM', trust_remote_code=True)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained('CofeAI/Tele-FLM', torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto", trust_remote_code=True)
|
34 |
+
inputs = tokenizer('北京市是中国的首都', return_tensors='pt').to(model.device)
|
35 |
+
generated = model.generate(**inputs, max_new_tokens=128, repetition_penalty=1.03)
|
36 |
+
print(tokenizer.decode(generated.cpu()[0], skip_special_tokens=True))
|
37 |
+
```
|
38 |
+
|
39 |
+
## Training Details
|
40 |
+
|
41 |
+
### Training Data
|
42 |
+
Our training dataset comprises a variety of domains, as detailed in the table below.
|
43 |
+
The total amount of data is roughly 2 trillion, with English and Chinese data in a ratio of about 2:1.
|
44 |
+
In line with the methodology of GPT-4, we collected some instruct data and incorporated it into our pre-training data after removing the test sets of common datasets using the strict n-gram-based method. We deliberately avoid “training on the test set” or any other benchmark-oriented trick.
|
45 |
+
|Domain |Language|Sampling Prop. |Epochs |Disk Size |
|
46 |
+
|-------|:--------------:|:--------------:|:-------:|:-----------:|
|
47 |
+
| Webtext |en, zh | 75.21% | 1.0 | 5.9 TB |
|
48 |
+
| Code |code, zh | 9.81% | 1.0 | 528.1 GB |
|
49 |
+
| Book |en, zh | 7.17% | 0.8 | 647.6 GB |
|
50 |
+
| WorldKnowledge |multi, en, zh | 2.87% | 2.5 | 67.5 GB |
|
51 |
+
| QA |en, zh | 2.12% | 1.0 | 159.2 GB |
|
52 |
+
| AcademicPaper |en | 0.99% | 1.0 | 54.4 GB |
|
53 |
+
| Profession-Law |zh | 1.04% | 1.0 | 84.2 GB |
|
54 |
+
| Profession-Math |math | 0.62% | 2.0 | 6.1 GB |
|
55 |
+
| Profession-Patent |zh | 0.14% | 1.0 | 10.4 GB |
|
56 |
+
| Profession-Medical |zh | 0.02% | 1.0 | 1.2 GB |
|
57 |
+
| Classical chinese |zh | 0.02% | 2.5 | 0.5 GB |
|
58 |
+
|
59 |
+
|
60 |
+
### Model Architecture
|
61 |
+
We adopt the architecture of FLM-101B as the backbone for Tele-FLM, with several modifications:
|
62 |
+
- Rotary Positional Embedding (RoPE)
|
63 |
+
- RMSNorm for normalization
|
64 |
+
- SwiGLU for activation function
|
65 |
+
- Linear bias disabled
|
66 |
+
- Embedding and language model head untied
|
67 |
+
|
68 |
+
Consequently, Tele-FLM is largely compatible with Llama architecturally.
|
69 |
+
To maximize convenience for the community, we made minimal adjustments to Llama's code to adapt it to Tele-FLM and released it as open source.
|
70 |
+
|
71 |
+
In the pre-training stage, we employ μP for optimal hyperparameter search. The μP model (Tele-FLM_μP) is architecturally identical to Tele-FLM except for the model width(# attention heads).
|
72 |
+
The architecture of Tele-FLM and Tele-FLM_μP is listed below.
|
73 |
+
For more details of μP, please refer to our technical report and the original Tensor Program papers.
|
74 |
+
|
75 |
+
| Models | layer<br>number | attention<br>heads| hidden<br>size | ffn hidden<br>size| vocab<br>size | context<br>length | param size<br>(M) |
|
76 |
+
|--------|--------------|----------------|-------------|----------------|------------|----------------|----------------|
|
77 |
+
| Tele-FLM | 64 | 64 | 8,192 | 21,824 | 80,000 | 4,096 | 52,850 |
|
78 |
+
| Tele-FLM_μP | 64 | 4 | 512 | 1,344 | 80,000 | 4,096 | 283 |
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
### Training Hyperparameters
|
84 |
+
|
85 |
+
Due to the smaller size, Tele-FLM_μP allows for significantly more experimental runs within fixed time and resource constraints.
|
86 |
+
We searched six hyperparameters for pretraining. All the hyperparameters are shown below.
|
87 |
+
|
88 |
+
|
89 |
+
| Searched Hyperparameters ||| Non-Searched Hyperparameters ||
|
90 |
+
|--------------------------------------------|-|-|-|----------------------------------|
|
91 |
+
| Learning Rate | 1.5e-4 || LR Schedule Type | cosine |
|
92 |
+
| Matrix Learning Rate | 1.5e-4 || LR Schedule (tokens) | 2.5T |
|
93 |
+
| Minimum Learning Rate | 1.5e-5 || Warmup Step | 2,000 |
|
94 |
+
| Standard Deviation | 4e-3 || Clip Grad | 1.0 |
|
95 |
+
| Matrix Standard Deviation | 4.242e-3 || Weight Decay | 0.0 |
|
96 |
+
| Input Mult | 1.0 || Batch Size (tokens) | 5,505,024 |
|
97 |
+
| Output Mult | 3.125e-2 || RoPE Theta | 10,000 |
|
98 |
+
|
99 |
+
|
100 |
+
### Training Loss
|
101 |
+
|
102 |
+
|
103 |
+
<p align="center" width="100%">
|
104 |
+
<a><img src="figures/train_loss.png" alt="nexa-octopus" style="width: 90%; min-width: 500px; display: block; margin: auto;"></a>
|
105 |
+
</p>
|
106 |
+
|
107 |
+
|
108 |
+
#### Hardware
|
109 |
+
|
110 |
+
Tele-FLM is trained on a cluster of 112 A800 SXM4 GPU servers, each with 8 NVLink A800 GPUs and 2TB of RAM.
|
111 |
+
The nodes have varied CPU configurations: 96 nodes with Intel 8358 (128x 2.60GHz) CPUs and 16 nodes with AMD 7643 (96x 2.30GHz) CPUs.
|
112 |
+
All nodes are interconnected via InfiniBand (IB). The training process lasted around two months, including downtime due to unexpected factors.
|
113 |
+
|
114 |
+
#### Software
|
115 |
+
|
116 |
+
Tele-FLM utilizes 3D parallel training, combining the prevailing methodologies: data parallelism, tensor parallelism, and pipeline parallelism.
|
117 |
+
The parallel training setup for Tele-FLM is configured as follows: tensor parallel=4, pipeline parallel=2, and data parallel=112.
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
## Evaluation
|
123 |
+
|
124 |
+
### English
|
125 |
+
|
126 |
+
#### Open LLM Leaderboard
|
127 |
+
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | WinoGrade | GSM8K | HumanEval | BBH |
|
128 |
+
|------------|:-------:|:-------:|:---------:|:------:|:----------:|:---------:|:------:|:---------:|:------:|
|
129 |
+
| | | 25-shot | 10-shot | 5-shot | zero-shot | 5-shot | 5-shot | zero-shot | 3-shot |
|
130 |
+
| LLAMA2-70B | 63.39 | 67.32 | 87.33 | 69.83 | 44.92 | 83.74 | 54.06 | 46.95 | 52.94 |
|
131 |
+
| LLAMA2-13B | 50.29 | 59.39 | 82.13 | 55.77 | 37.38 | 76.64 | 22.82 | 28.66 | 39.52 |
|
132 |
+
| LLAMA-65B | 56.98 | 63.48 | 86.09 | 63.93 | 43.43 | 82.56 | 37.23 | 33.54 | 45.54 |
|
133 |
+
| LLAMA-13B | 46.20 | 56.23 | 80.93 | 47.67 | 39.48 | 76.24 | 7.58 | 23.78 | 37.72 |
|
134 |
+
| Tele-FLM | 56.60 | 59.47 | 82.25 | 64.00 | 43.09 | 79.40 | 45.19 | 34.76 | 44.60 |
|
135 |
+
|
136 |
+
### Chinese
|
137 |
+
|
138 |
+
#### OpenCompass
|
139 |
+
| Model | Average | C-Eval | CMMLU | C3 | CHID | CSL |
|
140 |
+
|--------------|:-------:|:------:|:-----:|:-----:|:-----:|:-----:|
|
141 |
+
| GPT-4 | 76.64 | 69.90 | 71.00 | 95.10 | 82.20 | 65.00 |
|
142 |
+
| GPT-3.5 | 61.86 | 52.50 | 53.90 | 85.60 | 60.40 | 56.90 |
|
143 |
+
| Qwen1.5-72B | 80.45 | 83.72 | 83.09 | 81.86 | 91.09 | 62.50 |
|
144 |
+
| Qwen-72B | 83.00 | 83.30 | 83.60 | 95.80 | 91.10 | 61.20 |
|
145 |
+
| DeepSeek-67B | 73.46 | 66.90 | 70.40 | 77.80 | 89.10 | 63.10 |
|
146 |
+
| Tele-FLM | 71.13 | 65.48 | 66.98 | 66.25 | 92.57 | 64.38 |
|
147 |
+
|
148 |
+
|
149 |
+
## Tech report
|
150 |
+
For more detailed capabilities of Tele-FLM, see [Tele-FLM Technical Report](https://arxiv.org/pdf/2404.16645)
|
151 |
+
|
152 |
+
If you find our work helpful, please consider citing it.
|
153 |
+
```
|
154 |
+
@misc{li2024teleflm,
|
155 |
+
title={Tele-FLM Technical Report},
|
156 |
+
author={Xiang Li and Yiqun Yao and Xin Jiang and Xuezhi Fang and Chao Wang and Xinzhang Liu and Zihan Wang and Yu Zhao and Xin Wang and Yuyao Huang and Shuangyong Song and Yongxiang Li and Zheng Zhang and Bo Zhao and Aixin Sun and Yequan Wang and Zhongjiang He and Zhongyuan Wang and Xuelong Li and Tiejun Huang},
|
157 |
+
year={2024},
|
158 |
+
eprint={2404.16645},
|
159 |
+
archivePrefix={arXiv},
|
160 |
+
primaryClass={cs.CL}
|
161 |
+
}
|
162 |
+
```
|
configuration_teleflm.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" Tele-FLM model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
TeleFLM_PRETRAINED_CONFIG_ARCHIVE_MAP={}
|
29 |
+
|
30 |
+
|
31 |
+
class TeleFLMConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`TeleFLM`]. It is used to instantiate an TeleFLM
|
34 |
+
model according to the specified arguments, defining the model architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
42 |
+
Vocabulary size of the TeleFLM model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`TeleFLM`]
|
44 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
45 |
+
Dimension of the hidden representations.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
47 |
+
Dimension of the MLP representations.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
49 |
+
Number of hidden layers in the Transformer decoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
52 |
+
num_key_value_heads (`int`, *optional*):
|
53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
55 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
59 |
+
`num_attention_heads`.
|
60 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
61 |
+
The non-linear activation function (function or string) in the decoder.
|
62 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
63 |
+
The maximum sequence length that this model might ever be used with. TeleFLM supports up to 4096 tokens.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
67 |
+
The epsilon used by the rms normalization layers.
|
68 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
70 |
+
relevant if `config.is_decoder=True`.
|
71 |
+
pad_token_id (`int`, *optional*):
|
72 |
+
Padding token id.
|
73 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
74 |
+
Beginning of stream token id.
|
75 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
76 |
+
End of stream token id.
|
77 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
78 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
79 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
80 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
81 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
82 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
83 |
+
Whether to tie weight embeddings
|
84 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
85 |
+
The base period of the RoPE embeddings.
|
86 |
+
rope_scaling (`Dict`, *optional*):
|
87 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
88 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
89 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
90 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
91 |
+
these scaling strategies behave:
|
92 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
93 |
+
experimental feature, subject to breaking API changes in future versions.
|
94 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
95 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
96 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
97 |
+
The dropout ratio for the attention probabilities.
|
98 |
+
|
99 |
+
```python
|
100 |
+
>>> from transformers import TeleFLMModel, TeleFLMConfig
|
101 |
+
|
102 |
+
>>> # Initializing a TeleFLM configuration
|
103 |
+
>>> configuration = TeleFLMConfig()
|
104 |
+
|
105 |
+
>>> # Initializing a model from TeleFLM configuration
|
106 |
+
>>> model = TeleFLMModel(configuration)
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = "TeleFLM"
|
113 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_size=32000,
|
118 |
+
hidden_size=4096,
|
119 |
+
intermediate_size=11008,
|
120 |
+
num_hidden_layers=32,
|
121 |
+
num_attention_heads=32,
|
122 |
+
num_key_value_heads=None,
|
123 |
+
hidden_act="silu",
|
124 |
+
max_position_embeddings=2048,
|
125 |
+
initializer_range=0.02,
|
126 |
+
rms_norm_eps=1e-6,
|
127 |
+
use_cache=True,
|
128 |
+
pad_token_id=None,
|
129 |
+
bos_token_id=1,
|
130 |
+
eos_token_id=2,
|
131 |
+
pretraining_tp=1,
|
132 |
+
tie_word_embeddings=False,
|
133 |
+
rope_theta=10000.0,
|
134 |
+
rope_scaling=None,
|
135 |
+
attention_bias=False,
|
136 |
+
attention_dropout=0.0,
|
137 |
+
use_mup=False,
|
138 |
+
mup_scale_factor=1.0,
|
139 |
+
output_mult=1.0,
|
140 |
+
input_mult=1.0,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
self.vocab_size = vocab_size
|
144 |
+
self.max_position_embeddings = max_position_embeddings
|
145 |
+
self.hidden_size = hidden_size
|
146 |
+
self.intermediate_size = intermediate_size
|
147 |
+
self.num_hidden_layers = num_hidden_layers
|
148 |
+
self.num_attention_heads = num_attention_heads
|
149 |
+
|
150 |
+
# for backward compatibility
|
151 |
+
if num_key_value_heads is None:
|
152 |
+
num_key_value_heads = num_attention_heads
|
153 |
+
|
154 |
+
self.num_key_value_heads = num_key_value_heads
|
155 |
+
self.hidden_act = hidden_act
|
156 |
+
self.initializer_range = initializer_range
|
157 |
+
self.rms_norm_eps = rms_norm_eps
|
158 |
+
self.pretraining_tp = pretraining_tp
|
159 |
+
self.use_cache = use_cache
|
160 |
+
self.rope_theta = rope_theta
|
161 |
+
self.rope_scaling = rope_scaling
|
162 |
+
self._rope_scaling_validation()
|
163 |
+
self.attention_bias = attention_bias
|
164 |
+
self.attention_dropout = attention_dropout
|
165 |
+
self.use_mup=use_mup
|
166 |
+
self.mup_scale_factor=mup_scale_factor
|
167 |
+
self.output_mult=output_mult
|
168 |
+
self.input_mult=input_mult
|
169 |
+
|
170 |
+
super().__init__(
|
171 |
+
pad_token_id=pad_token_id,
|
172 |
+
bos_token_id=bos_token_id,
|
173 |
+
eos_token_id=eos_token_id,
|
174 |
+
tie_word_embeddings=tie_word_embeddings,
|
175 |
+
**kwargs,
|
176 |
+
)
|
177 |
+
|
178 |
+
def _rope_scaling_validation(self):
|
179 |
+
"""
|
180 |
+
Validate the `rope_scaling` configuration.
|
181 |
+
"""
|
182 |
+
if self.rope_scaling is None:
|
183 |
+
return
|
184 |
+
|
185 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
186 |
+
raise ValueError(
|
187 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
188 |
+
)
|
189 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
190 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
191 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
192 |
+
raise ValueError(
|
193 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
194 |
+
)
|
195 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
196 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
figures/._train_loss.png
ADDED
figures/train_loss.png
ADDED
modeling_teleflm.py
ADDED
@@ -0,0 +1,1524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
""" PyTorch Tele-FLM model, based on LLAMA implementation. """
|
3 |
+
|
4 |
+
import math
|
5 |
+
import warnings
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
13 |
+
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
16 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
17 |
+
from transformers.modeling_outputs import (
|
18 |
+
BaseModelOutputWithPast,
|
19 |
+
CausalLMOutputWithPast,
|
20 |
+
QuestionAnsweringModelOutput,
|
21 |
+
SequenceClassifierOutputWithPast,
|
22 |
+
)
|
23 |
+
from transformers.modeling_utils import PreTrainedModel
|
24 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
25 |
+
from transformers.utils import (
|
26 |
+
add_start_docstrings,
|
27 |
+
add_start_docstrings_to_model_forward,
|
28 |
+
is_flash_attn_2_available,
|
29 |
+
is_flash_attn_greater_or_equal_2_10,
|
30 |
+
logging,
|
31 |
+
replace_return_docstrings,
|
32 |
+
)
|
33 |
+
from .configuration_teleflm import TeleFLMConfig
|
34 |
+
|
35 |
+
if is_flash_attn_2_available():
|
36 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
37 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CONFIG_FOR_DOC = "TeleFLMConfig"
|
43 |
+
|
44 |
+
|
45 |
+
def _get_unpad_data(attention_mask):
|
46 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
47 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
48 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
49 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
50 |
+
return (
|
51 |
+
indices,
|
52 |
+
cu_seqlens,
|
53 |
+
max_seqlen_in_batch,
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
class TeleFLMRMSNorm(nn.Module):
|
58 |
+
def __init__(self, hidden_size, eps=1e-6):
|
59 |
+
"""
|
60 |
+
TeleFLMRMSNorm is equivalent to T5LayerNorm
|
61 |
+
"""
|
62 |
+
super().__init__()
|
63 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
64 |
+
self.variance_epsilon = eps
|
65 |
+
|
66 |
+
def forward(self, hidden_states):
|
67 |
+
input_dtype = hidden_states.dtype
|
68 |
+
hidden_states = hidden_states.to(torch.float32)
|
69 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
70 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
71 |
+
return self.weight * hidden_states.to(input_dtype)
|
72 |
+
|
73 |
+
|
74 |
+
ALL_LAYERNORM_LAYERS.append(TeleFLMRMSNorm)
|
75 |
+
|
76 |
+
|
77 |
+
class TeleFLMRotaryEmbedding(nn.Module):
|
78 |
+
def __init__(self, dim, max_position_embeddings=4096, base=10000, device=None, scaling_factor=1.0):
|
79 |
+
super().__init__()
|
80 |
+
self.scaling_factor = scaling_factor
|
81 |
+
self.dim = dim
|
82 |
+
self.max_position_embeddings = max_position_embeddings
|
83 |
+
self.base = base
|
84 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
85 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
86 |
+
# For BC we register cos and sin cached
|
87 |
+
self.max_seq_len_cached = max_position_embeddings
|
88 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
89 |
+
t = t / self.scaling_factor
|
90 |
+
freqs = torch.outer(t, self.inv_freq)
|
91 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
92 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
93 |
+
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
|
94 |
+
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
|
95 |
+
|
96 |
+
|
97 |
+
@torch.no_grad()
|
98 |
+
def forward(self, x, position_ids):
|
99 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
100 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
101 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
102 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
103 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
104 |
+
device_type = x.device.type
|
105 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
106 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
107 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
108 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
109 |
+
cos = emb.cos()
|
110 |
+
sin = emb.sin()
|
111 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
112 |
+
|
113 |
+
|
114 |
+
class TeleFLMLinearScalingRotaryEmbedding(TeleFLMRotaryEmbedding):
|
115 |
+
"""TeleFLMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
116 |
+
|
117 |
+
def forward(self, x, position_ids):
|
118 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
119 |
+
position_ids = position_ids.float() / self.scaling_factor
|
120 |
+
cos, sin = super().forward(x, position_ids)
|
121 |
+
return cos, sin
|
122 |
+
|
123 |
+
|
124 |
+
class TeleFLMDynamicNTKScalingRotaryEmbedding(TeleFLMRotaryEmbedding):
|
125 |
+
"""TeleFLMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
126 |
+
|
127 |
+
def forward(self, x, position_ids):
|
128 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
129 |
+
seq_len = torch.max(position_ids) + 1
|
130 |
+
if seq_len > self.max_position_embeddings:
|
131 |
+
base = self.base * (
|
132 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
133 |
+
) ** (self.dim / (self.dim - 2))
|
134 |
+
inv_freq = 1.0 / (
|
135 |
+
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
136 |
+
)
|
137 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
138 |
+
|
139 |
+
cos, sin = super().forward(x, position_ids)
|
140 |
+
return cos, sin
|
141 |
+
|
142 |
+
|
143 |
+
def rotate_half(x):
|
144 |
+
"""Rotates half the hidden dims of the input."""
|
145 |
+
x1 = x[..., : x.shape[-1] // 2]
|
146 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
147 |
+
return torch.cat((-x2, x1), dim=-1)
|
148 |
+
|
149 |
+
|
150 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
151 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
q (`torch.Tensor`): The query tensor.
|
155 |
+
k (`torch.Tensor`): The key tensor.
|
156 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
157 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
158 |
+
position_ids (`torch.Tensor`, *optional*):
|
159 |
+
Deprecated and unused.
|
160 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
161 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
162 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
163 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
164 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
165 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
166 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
167 |
+
Returns:
|
168 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
169 |
+
"""
|
170 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
171 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
172 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
173 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
174 |
+
return q_embed, k_embed
|
175 |
+
|
176 |
+
|
177 |
+
class TeleFLMMLP(nn.Module):
|
178 |
+
def __init__(self, config):
|
179 |
+
super().__init__()
|
180 |
+
self.config = config
|
181 |
+
self.hidden_size = config.hidden_size
|
182 |
+
self.intermediate_size = config.intermediate_size
|
183 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
184 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
185 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
186 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
187 |
+
|
188 |
+
def forward(self, x):
|
189 |
+
if self.config.pretraining_tp > 1:
|
190 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
191 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
192 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
193 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
194 |
+
|
195 |
+
gate_proj = torch.cat(
|
196 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
197 |
+
)
|
198 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
199 |
+
|
200 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
201 |
+
down_proj = [
|
202 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
203 |
+
]
|
204 |
+
down_proj = sum(down_proj)
|
205 |
+
else:
|
206 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
207 |
+
|
208 |
+
return down_proj
|
209 |
+
|
210 |
+
|
211 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
212 |
+
"""
|
213 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
214 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
215 |
+
"""
|
216 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
217 |
+
if n_rep == 1:
|
218 |
+
return hidden_states
|
219 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
220 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
221 |
+
|
222 |
+
|
223 |
+
class TeleFLMAttention(nn.Module):
|
224 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
225 |
+
|
226 |
+
def __init__(self, config: TeleFLMConfig, layer_idx: Optional[int] = None):
|
227 |
+
super().__init__()
|
228 |
+
self.config = config
|
229 |
+
self.layer_idx = layer_idx
|
230 |
+
if layer_idx is None:
|
231 |
+
logger.warning_once(
|
232 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
233 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
234 |
+
"when creating this class."
|
235 |
+
)
|
236 |
+
|
237 |
+
self.attention_dropout = config.attention_dropout
|
238 |
+
self.hidden_size = config.hidden_size
|
239 |
+
self.num_heads = config.num_attention_heads
|
240 |
+
self.head_dim = self.hidden_size // self.num_heads
|
241 |
+
self.num_key_value_heads = config.num_key_value_heads
|
242 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
243 |
+
self.max_position_embeddings = config.max_position_embeddings
|
244 |
+
self.rope_theta = config.rope_theta
|
245 |
+
self.is_causal = True
|
246 |
+
|
247 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
248 |
+
raise ValueError(
|
249 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
250 |
+
f" and `num_heads`: {self.num_heads})."
|
251 |
+
)
|
252 |
+
|
253 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
254 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
255 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
256 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
257 |
+
self._init_rope()
|
258 |
+
|
259 |
+
def _init_rope(self):
|
260 |
+
if self.config.rope_scaling is None:
|
261 |
+
self.rotary_emb = TeleFLMRotaryEmbedding(
|
262 |
+
self.head_dim,
|
263 |
+
max_position_embeddings=self.max_position_embeddings,
|
264 |
+
base=self.rope_theta,
|
265 |
+
)
|
266 |
+
else:
|
267 |
+
scaling_type = self.config.rope_scaling["type"]
|
268 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
269 |
+
if scaling_type == "linear":
|
270 |
+
self.rotary_emb = TeleFLMLinearScalingRotaryEmbedding(
|
271 |
+
self.head_dim,
|
272 |
+
max_position_embeddings=self.max_position_embeddings,
|
273 |
+
scaling_factor=scaling_factor,
|
274 |
+
base=self.rope_theta,
|
275 |
+
)
|
276 |
+
elif scaling_type == "dynamic":
|
277 |
+
self.rotary_emb = TeleFLMDynamicNTKScalingRotaryEmbedding(
|
278 |
+
self.head_dim,
|
279 |
+
max_position_embeddings=self.max_position_embeddings,
|
280 |
+
scaling_factor=scaling_factor,
|
281 |
+
base=self.rope_theta,
|
282 |
+
)
|
283 |
+
else:
|
284 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
285 |
+
|
286 |
+
def forward(
|
287 |
+
self,
|
288 |
+
hidden_states: torch.Tensor,
|
289 |
+
attention_mask: Optional[torch.Tensor] = None,
|
290 |
+
position_ids: Optional[torch.LongTensor] = None,
|
291 |
+
past_key_value: Optional[Cache] = None,
|
292 |
+
output_attentions: bool = False,
|
293 |
+
use_cache: bool = False,
|
294 |
+
cache_position: Optional[torch.LongTensor] = None,
|
295 |
+
**kwargs,
|
296 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
297 |
+
bsz, q_len, _ = hidden_states.size()
|
298 |
+
|
299 |
+
if self.config.pretraining_tp > 1:
|
300 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
301 |
+
query_slices = self.q_proj.weight.split(
|
302 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
303 |
+
)
|
304 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
305 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
306 |
+
|
307 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
308 |
+
query_states = torch.cat(query_states, dim=-1)
|
309 |
+
|
310 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
311 |
+
key_states = torch.cat(key_states, dim=-1)
|
312 |
+
|
313 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
314 |
+
value_states = torch.cat(value_states, dim=-1)
|
315 |
+
|
316 |
+
else:
|
317 |
+
query_states = self.q_proj(hidden_states)
|
318 |
+
key_states = self.k_proj(hidden_states)
|
319 |
+
value_states = self.v_proj(hidden_states)
|
320 |
+
|
321 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
322 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
323 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
324 |
+
|
325 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
326 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
327 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
328 |
+
|
329 |
+
if past_key_value is not None:
|
330 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
331 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
332 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
333 |
+
|
334 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
335 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
336 |
+
|
337 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
338 |
+
|
339 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
340 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
341 |
+
attn_weights = attn_weights + causal_mask
|
342 |
+
|
343 |
+
# upcast attention to fp32
|
344 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
345 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
346 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
347 |
+
|
348 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
349 |
+
raise ValueError(
|
350 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
351 |
+
f" {attn_output.size()}"
|
352 |
+
)
|
353 |
+
|
354 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
355 |
+
|
356 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
357 |
+
|
358 |
+
if self.config.pretraining_tp > 1:
|
359 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
360 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
361 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
362 |
+
else:
|
363 |
+
attn_output = self.o_proj(attn_output)
|
364 |
+
|
365 |
+
if not output_attentions:
|
366 |
+
attn_weights = None
|
367 |
+
|
368 |
+
return attn_output, attn_weights, past_key_value
|
369 |
+
|
370 |
+
|
371 |
+
class TeleFLMFlashAttention2(TeleFLMAttention):
|
372 |
+
"""
|
373 |
+
Tele-FLM flash attention module. This module inherits from `TeleFLMAttention` as the weights of the module stays
|
374 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
375 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
376 |
+
"""
|
377 |
+
|
378 |
+
def __init__(self, *args, **kwargs):
|
379 |
+
super().__init__(*args, **kwargs)
|
380 |
+
|
381 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
382 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
383 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
384 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
385 |
+
|
386 |
+
def forward(
|
387 |
+
self,
|
388 |
+
hidden_states: torch.Tensor,
|
389 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
390 |
+
position_ids: Optional[torch.LongTensor] = None,
|
391 |
+
past_key_value: Optional[Cache] = None,
|
392 |
+
output_attentions: bool = False,
|
393 |
+
use_cache: bool = False,
|
394 |
+
cache_position: Optional[torch.LongTensor] = None,
|
395 |
+
**kwargs,
|
396 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
397 |
+
output_attentions = False
|
398 |
+
|
399 |
+
bsz, q_len, _ = hidden_states.size()
|
400 |
+
|
401 |
+
query_states = self.q_proj(hidden_states)
|
402 |
+
key_states = self.k_proj(hidden_states)
|
403 |
+
value_states = self.v_proj(hidden_states)
|
404 |
+
|
405 |
+
# Flash attention requires the input to have the shape
|
406 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
407 |
+
# therefore we just need to keep the original shape
|
408 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
409 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
410 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
411 |
+
|
412 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
413 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
414 |
+
|
415 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
416 |
+
|
417 |
+
if past_key_value is not None:
|
418 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
419 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
420 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
421 |
+
|
422 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
423 |
+
# to be able to avoid many of these transpose/reshape/view.
|
424 |
+
query_states = query_states.transpose(1, 2)
|
425 |
+
key_states = key_states.transpose(1, 2)
|
426 |
+
value_states = value_states.transpose(1, 2)
|
427 |
+
|
428 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
429 |
+
|
430 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
431 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
432 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
433 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
434 |
+
# in fp32. (TeleFLMRMSNorm handles it correctly)
|
435 |
+
|
436 |
+
input_dtype = query_states.dtype
|
437 |
+
if input_dtype == torch.float32:
|
438 |
+
if torch.is_autocast_enabled():
|
439 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
440 |
+
# Handle the case where the model is quantized
|
441 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
442 |
+
target_dtype = self.config._pre_quantization_dtype
|
443 |
+
else:
|
444 |
+
target_dtype = self.q_proj.weight.dtype
|
445 |
+
|
446 |
+
logger.warning_once(
|
447 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
448 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
449 |
+
f" {target_dtype}."
|
450 |
+
)
|
451 |
+
|
452 |
+
query_states = query_states.to(target_dtype)
|
453 |
+
key_states = key_states.to(target_dtype)
|
454 |
+
value_states = value_states.to(target_dtype)
|
455 |
+
|
456 |
+
attn_output = self._flash_attention_forward(
|
457 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
458 |
+
)
|
459 |
+
|
460 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
461 |
+
attn_output = self.o_proj(attn_output)
|
462 |
+
|
463 |
+
if not output_attentions:
|
464 |
+
attn_weights = None
|
465 |
+
|
466 |
+
return attn_output, attn_weights, past_key_value
|
467 |
+
|
468 |
+
def _flash_attention_forward(
|
469 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
470 |
+
):
|
471 |
+
"""
|
472 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
473 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
474 |
+
|
475 |
+
Args:
|
476 |
+
query_states (`torch.Tensor`):
|
477 |
+
Input query states to be passed to Flash Attention API
|
478 |
+
key_states (`torch.Tensor`):
|
479 |
+
Input key states to be passed to Flash Attention API
|
480 |
+
value_states (`torch.Tensor`):
|
481 |
+
Input value states to be passed to Flash Attention API
|
482 |
+
attention_mask (`torch.Tensor`):
|
483 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
484 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
485 |
+
dropout (`float`):
|
486 |
+
Attention dropout
|
487 |
+
softmax_scale (`float`, *optional*):
|
488 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
489 |
+
"""
|
490 |
+
if not self._flash_attn_uses_top_left_mask:
|
491 |
+
causal = self.is_causal
|
492 |
+
else:
|
493 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in TeleFLMFlashAttention2 __init__.
|
494 |
+
causal = self.is_causal and query_length != 1
|
495 |
+
|
496 |
+
# Contains at least one padding token in the sequence
|
497 |
+
if attention_mask is not None:
|
498 |
+
batch_size = query_states.shape[0]
|
499 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
500 |
+
query_states, key_states, value_states, attention_mask, query_length
|
501 |
+
)
|
502 |
+
|
503 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
504 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
505 |
+
|
506 |
+
attn_output_unpad = flash_attn_varlen_func(
|
507 |
+
query_states,
|
508 |
+
key_states,
|
509 |
+
value_states,
|
510 |
+
cu_seqlens_q=cu_seqlens_q,
|
511 |
+
cu_seqlens_k=cu_seqlens_k,
|
512 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
513 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
514 |
+
dropout_p=dropout,
|
515 |
+
softmax_scale=softmax_scale,
|
516 |
+
causal=causal,
|
517 |
+
)
|
518 |
+
|
519 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
520 |
+
else:
|
521 |
+
attn_output = flash_attn_func(
|
522 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
523 |
+
)
|
524 |
+
|
525 |
+
return attn_output
|
526 |
+
|
527 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
528 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
529 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
530 |
+
|
531 |
+
key_layer = index_first_axis(
|
532 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
533 |
+
)
|
534 |
+
value_layer = index_first_axis(
|
535 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
536 |
+
)
|
537 |
+
if query_length == kv_seq_len:
|
538 |
+
query_layer = index_first_axis(
|
539 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
540 |
+
)
|
541 |
+
cu_seqlens_q = cu_seqlens_k
|
542 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
543 |
+
indices_q = indices_k
|
544 |
+
elif query_length == 1:
|
545 |
+
max_seqlen_in_batch_q = 1
|
546 |
+
cu_seqlens_q = torch.arange(
|
547 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
548 |
+
) # There is a memcpy here, that is very bad.
|
549 |
+
indices_q = cu_seqlens_q[:-1]
|
550 |
+
query_layer = query_layer.squeeze(1)
|
551 |
+
else:
|
552 |
+
# The -q_len: slice assumes left padding.
|
553 |
+
attention_mask = attention_mask[:, -query_length:]
|
554 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
555 |
+
|
556 |
+
return (
|
557 |
+
query_layer,
|
558 |
+
key_layer,
|
559 |
+
value_layer,
|
560 |
+
indices_q,
|
561 |
+
(cu_seqlens_q, cu_seqlens_k),
|
562 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
563 |
+
)
|
564 |
+
|
565 |
+
|
566 |
+
class TeleFLMSdpaAttention(TeleFLMAttention):
|
567 |
+
"""
|
568 |
+
Tele-FLM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
569 |
+
`TeleFLMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
570 |
+
SDPA API.
|
571 |
+
"""
|
572 |
+
|
573 |
+
# Adapted from TeleFLMAttention.forward
|
574 |
+
def forward(
|
575 |
+
self,
|
576 |
+
hidden_states: torch.Tensor,
|
577 |
+
attention_mask: Optional[torch.Tensor] = None,
|
578 |
+
position_ids: Optional[torch.LongTensor] = None,
|
579 |
+
past_key_value: Optional[Cache] = None,
|
580 |
+
output_attentions: bool = False,
|
581 |
+
use_cache: bool = False,
|
582 |
+
cache_position: Optional[torch.LongTensor] = None,
|
583 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
584 |
+
if output_attentions:
|
585 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
586 |
+
logger.warning_once(
|
587 |
+
"TeleFLMModel is using TeleFLMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
588 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
589 |
+
)
|
590 |
+
return super().forward(
|
591 |
+
hidden_states=hidden_states,
|
592 |
+
attention_mask=attention_mask,
|
593 |
+
position_ids=position_ids,
|
594 |
+
past_key_value=past_key_value,
|
595 |
+
output_attentions=output_attentions,
|
596 |
+
use_cache=use_cache,
|
597 |
+
cache_position=cache_position,
|
598 |
+
)
|
599 |
+
|
600 |
+
bsz, q_len, _ = hidden_states.size()
|
601 |
+
|
602 |
+
query_states = self.q_proj(hidden_states)
|
603 |
+
key_states = self.k_proj(hidden_states)
|
604 |
+
value_states = self.v_proj(hidden_states)
|
605 |
+
|
606 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
607 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
608 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
609 |
+
|
610 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
611 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
612 |
+
|
613 |
+
# In case static cache is used, it is an instance attribute.
|
614 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
615 |
+
|
616 |
+
if past_key_value is not None:
|
617 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
618 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
619 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
620 |
+
|
621 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
622 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
623 |
+
|
624 |
+
causal_mask = attention_mask
|
625 |
+
# if attention_mask is not None and cache_position is not None:
|
626 |
+
if attention_mask is not None:
|
627 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
628 |
+
|
629 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
630 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
631 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
632 |
+
query_states = query_states.contiguous()
|
633 |
+
key_states = key_states.contiguous()
|
634 |
+
value_states = value_states.contiguous()
|
635 |
+
|
636 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
637 |
+
query_states,
|
638 |
+
key_states,
|
639 |
+
value_states,
|
640 |
+
attn_mask=causal_mask,
|
641 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
642 |
+
)
|
643 |
+
|
644 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
645 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
646 |
+
|
647 |
+
attn_output = self.o_proj(attn_output)
|
648 |
+
|
649 |
+
return attn_output, None, past_key_value
|
650 |
+
|
651 |
+
|
652 |
+
TELEFLM_ATTENTION_CLASSES = {
|
653 |
+
"eager": TeleFLMAttention,
|
654 |
+
"flash_attention_2": TeleFLMFlashAttention2,
|
655 |
+
"sdpa": TeleFLMSdpaAttention,
|
656 |
+
}
|
657 |
+
|
658 |
+
|
659 |
+
class TeleFLMDecoderLayer(nn.Module):
|
660 |
+
def __init__(self, config: TeleFLMConfig, layer_idx: int):
|
661 |
+
super().__init__()
|
662 |
+
self.hidden_size = config.hidden_size
|
663 |
+
self.self_attn = TELEFLM_ATTENTION_CLASSES.get(config._attn_implementation, TeleFLMAttention)(config=config, layer_idx=layer_idx)
|
664 |
+
self.mlp = TeleFLMMLP(config)
|
665 |
+
self.input_layernorm = TeleFLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
666 |
+
self.post_attention_layernorm = TeleFLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
667 |
+
|
668 |
+
def forward(
|
669 |
+
self,
|
670 |
+
hidden_states: torch.Tensor,
|
671 |
+
attention_mask: Optional[torch.Tensor] = None,
|
672 |
+
position_ids: Optional[torch.LongTensor] = None,
|
673 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
674 |
+
output_attentions: Optional[bool] = False,
|
675 |
+
use_cache: Optional[bool] = False,
|
676 |
+
cache_position: Optional[torch.LongTensor] = None,
|
677 |
+
**kwargs,
|
678 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
679 |
+
"""
|
680 |
+
Args:
|
681 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
682 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
683 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
684 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
685 |
+
output_attentions (`bool`, *optional*):
|
686 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
687 |
+
returned tensors for more detail.
|
688 |
+
use_cache (`bool`, *optional*):
|
689 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
690 |
+
(see `past_key_values`).
|
691 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
692 |
+
"""
|
693 |
+
if "padding_mask" in kwargs:
|
694 |
+
warnings.warn(
|
695 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
696 |
+
)
|
697 |
+
|
698 |
+
residual = hidden_states
|
699 |
+
|
700 |
+
hidden_states = self.input_layernorm(hidden_states)
|
701 |
+
|
702 |
+
# Self Attention
|
703 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
704 |
+
hidden_states=hidden_states,
|
705 |
+
attention_mask=attention_mask,
|
706 |
+
position_ids=position_ids,
|
707 |
+
past_key_value=past_key_value,
|
708 |
+
output_attentions=output_attentions,
|
709 |
+
use_cache=use_cache,
|
710 |
+
cache_position=cache_position,
|
711 |
+
**kwargs,
|
712 |
+
)
|
713 |
+
hidden_states = residual + hidden_states
|
714 |
+
|
715 |
+
# Fully Connected
|
716 |
+
residual = hidden_states
|
717 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
718 |
+
hidden_states = self.mlp(hidden_states)
|
719 |
+
hidden_states = residual + hidden_states
|
720 |
+
|
721 |
+
outputs = (hidden_states,)
|
722 |
+
|
723 |
+
if output_attentions:
|
724 |
+
outputs += (self_attn_weights,)
|
725 |
+
|
726 |
+
if use_cache:
|
727 |
+
outputs += (present_key_value,)
|
728 |
+
|
729 |
+
return outputs
|
730 |
+
|
731 |
+
|
732 |
+
TELEFLM_START_DOCSTRING = r"""
|
733 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
734 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
735 |
+
etc.)
|
736 |
+
|
737 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
738 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
739 |
+
and behavior.
|
740 |
+
|
741 |
+
Parameters:
|
742 |
+
config ([`TeleFLMConfig`]):
|
743 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
744 |
+
load the weights associated with the model, only the configuration. Check out the
|
745 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
746 |
+
"""
|
747 |
+
|
748 |
+
|
749 |
+
@add_start_docstrings(
|
750 |
+
"The bare Tele-FLM Model outputting raw hidden-states without any specific head on top.",
|
751 |
+
TELEFLM_START_DOCSTRING,
|
752 |
+
)
|
753 |
+
class TeleFLMPreTrainedModel(PreTrainedModel):
|
754 |
+
config_class = TeleFLMConfig
|
755 |
+
base_model_prefix = "model"
|
756 |
+
supports_gradient_checkpointing = True
|
757 |
+
_no_split_modules = ["TeleFLMDecoderLayer"]
|
758 |
+
_skip_keys_device_placement = ["past_key_values"]
|
759 |
+
_supports_flash_attn_2 = True
|
760 |
+
_supports_sdpa = True
|
761 |
+
_supports_cache_class = True
|
762 |
+
|
763 |
+
def _init_weights(self, module):
|
764 |
+
std = self.config.initializer_range
|
765 |
+
if isinstance(module, nn.Linear):
|
766 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
767 |
+
if module.bias is not None:
|
768 |
+
module.bias.data.zero_()
|
769 |
+
elif isinstance(module, nn.Embedding):
|
770 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
771 |
+
if module.padding_idx is not None:
|
772 |
+
module.weight.data[module.padding_idx].zero_()
|
773 |
+
|
774 |
+
def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
|
775 |
+
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
776 |
+
raise ValueError(
|
777 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
778 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
779 |
+
)
|
780 |
+
|
781 |
+
for layer in self.model.layers:
|
782 |
+
device = layer.input_layernorm.weight.device
|
783 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
784 |
+
dtype = self.config._pre_quantization_dtype
|
785 |
+
else:
|
786 |
+
dtype = layer.self_attn.o_proj.weight.dtype
|
787 |
+
layer.self_attn.past_key_value = cache_cls(
|
788 |
+
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
789 |
+
)
|
790 |
+
|
791 |
+
def _reset_cache(self):
|
792 |
+
for layer in self.model.layers:
|
793 |
+
layer.self_attn.past_key_value = None
|
794 |
+
|
795 |
+
|
796 |
+
TELEFLM_INPUTS_DOCSTRING = r"""
|
797 |
+
Args:
|
798 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
799 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
800 |
+
it.
|
801 |
+
|
802 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
803 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
804 |
+
|
805 |
+
[What are input IDs?](../glossary#input-ids)
|
806 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
807 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
808 |
+
|
809 |
+
- 1 for tokens that are **not masked**,
|
810 |
+
- 0 for tokens that are **masked**.
|
811 |
+
|
812 |
+
[What are attention masks?](../glossary#attention-mask)
|
813 |
+
|
814 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
815 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
816 |
+
|
817 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
818 |
+
`past_key_values`).
|
819 |
+
|
820 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
821 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
822 |
+
information on the default strategy.
|
823 |
+
|
824 |
+
- 1 indicates the head is **not masked**,
|
825 |
+
- 0 indicates the head is **masked**.
|
826 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
827 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
828 |
+
config.n_positions - 1]`.
|
829 |
+
|
830 |
+
[What are position IDs?](../glossary#position-ids)
|
831 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
832 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
833 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
834 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
835 |
+
|
836 |
+
Two formats are allowed:
|
837 |
+
- a [`~cache_utils.Cache`] instance;
|
838 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
839 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
840 |
+
cache format.
|
841 |
+
|
842 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
843 |
+
legacy cache format will be returned.
|
844 |
+
|
845 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
846 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
847 |
+
of shape `(batch_size, sequence_length)`.
|
848 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
849 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
850 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
851 |
+
model's internal embedding lookup matrix.
|
852 |
+
use_cache (`bool`, *optional*):
|
853 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
854 |
+
`past_key_values`).
|
855 |
+
output_attentions (`bool`, *optional*):
|
856 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
857 |
+
tensors for more detail.
|
858 |
+
output_hidden_states (`bool`, *optional*):
|
859 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
860 |
+
more detail.
|
861 |
+
return_dict (`bool`, *optional*):
|
862 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
863 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
864 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
865 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
866 |
+
the complete sequence length.
|
867 |
+
"""
|
868 |
+
|
869 |
+
|
870 |
+
@add_start_docstrings(
|
871 |
+
"The bare Tele-FLM Model outputting raw hidden-states without any specific head on top.",
|
872 |
+
TELEFLM_START_DOCSTRING,
|
873 |
+
)
|
874 |
+
class TeleFLMModel(TeleFLMPreTrainedModel):
|
875 |
+
"""
|
876 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TeleFLMDecoderLayer`]
|
877 |
+
|
878 |
+
Args:
|
879 |
+
config: TeleFLMConfig
|
880 |
+
"""
|
881 |
+
|
882 |
+
def __init__(self, config: TeleFLMConfig):
|
883 |
+
super().__init__(config)
|
884 |
+
self.padding_idx = config.pad_token_id
|
885 |
+
self.vocab_size = config.vocab_size
|
886 |
+
# Mup
|
887 |
+
self.use_mup = config.use_mup
|
888 |
+
if self.use_mup:
|
889 |
+
self.input_mult = config.input_mult
|
890 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
891 |
+
self.layers = nn.ModuleList(
|
892 |
+
[TeleFLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
893 |
+
)
|
894 |
+
self.norm = TeleFLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
895 |
+
self.gradient_checkpointing = False
|
896 |
+
|
897 |
+
# Initialize weights and apply final processing
|
898 |
+
self.post_init()
|
899 |
+
|
900 |
+
def get_input_embeddings(self):
|
901 |
+
return self.embed_tokens
|
902 |
+
|
903 |
+
def set_input_embeddings(self, value):
|
904 |
+
self.embed_tokens = value
|
905 |
+
|
906 |
+
@add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
|
907 |
+
def forward(
|
908 |
+
self,
|
909 |
+
input_ids: torch.LongTensor = None,
|
910 |
+
attention_mask: Optional[torch.Tensor] = None,
|
911 |
+
position_ids: Optional[torch.LongTensor] = None,
|
912 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
913 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
914 |
+
use_cache: Optional[bool] = None,
|
915 |
+
output_attentions: Optional[bool] = None,
|
916 |
+
output_hidden_states: Optional[bool] = None,
|
917 |
+
return_dict: Optional[bool] = None,
|
918 |
+
cache_position: Optional[torch.LongTensor] = None,
|
919 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
920 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
921 |
+
output_hidden_states = (
|
922 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
923 |
+
)
|
924 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
925 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
926 |
+
|
927 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
928 |
+
raise ValueError(
|
929 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
930 |
+
)
|
931 |
+
|
932 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
933 |
+
logger.warning_once(
|
934 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
935 |
+
)
|
936 |
+
use_cache = False
|
937 |
+
|
938 |
+
if inputs_embeds is None:
|
939 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
940 |
+
|
941 |
+
# Mup
|
942 |
+
if self.use_mup:
|
943 |
+
inputs_embeds = inputs_embeds * self.input_mult
|
944 |
+
|
945 |
+
past_seen_tokens = 0
|
946 |
+
if use_cache: # kept for BC (cache positions)
|
947 |
+
if not isinstance(past_key_values, StaticCache):
|
948 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
949 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
950 |
+
|
951 |
+
if cache_position is None:
|
952 |
+
if isinstance(past_key_values, StaticCache):
|
953 |
+
raise ValueError("cache_position is a required argument when using StaticCache.")
|
954 |
+
cache_position = torch.arange(
|
955 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
956 |
+
)
|
957 |
+
|
958 |
+
if position_ids is None:
|
959 |
+
position_ids = cache_position.unsqueeze(0)
|
960 |
+
|
961 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
962 |
+
|
963 |
+
# embed positions
|
964 |
+
hidden_states = inputs_embeds
|
965 |
+
|
966 |
+
# decoder layers
|
967 |
+
all_hidden_states = () if output_hidden_states else None
|
968 |
+
all_self_attns = () if output_attentions else None
|
969 |
+
next_decoder_cache = None
|
970 |
+
|
971 |
+
for decoder_layer in self.layers:
|
972 |
+
if output_hidden_states:
|
973 |
+
all_hidden_states += (hidden_states,)
|
974 |
+
|
975 |
+
if self.gradient_checkpointing and self.training:
|
976 |
+
layer_outputs = self._gradient_checkpointing_func(
|
977 |
+
decoder_layer.__call__,
|
978 |
+
hidden_states,
|
979 |
+
causal_mask,
|
980 |
+
position_ids,
|
981 |
+
past_key_values,
|
982 |
+
output_attentions,
|
983 |
+
use_cache,
|
984 |
+
cache_position,
|
985 |
+
)
|
986 |
+
else:
|
987 |
+
layer_outputs = decoder_layer(
|
988 |
+
hidden_states,
|
989 |
+
attention_mask=causal_mask,
|
990 |
+
position_ids=position_ids,
|
991 |
+
past_key_value=past_key_values,
|
992 |
+
output_attentions=output_attentions,
|
993 |
+
use_cache=use_cache,
|
994 |
+
cache_position=cache_position,
|
995 |
+
)
|
996 |
+
|
997 |
+
hidden_states = layer_outputs[0]
|
998 |
+
|
999 |
+
if use_cache:
|
1000 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1001 |
+
|
1002 |
+
if output_attentions:
|
1003 |
+
all_self_attns += (layer_outputs[1],)
|
1004 |
+
|
1005 |
+
hidden_states = self.norm(hidden_states)
|
1006 |
+
|
1007 |
+
# add hidden states from the last decoder layer
|
1008 |
+
if output_hidden_states:
|
1009 |
+
all_hidden_states += (hidden_states,)
|
1010 |
+
|
1011 |
+
next_cache = None
|
1012 |
+
if use_cache:
|
1013 |
+
next_cache = (
|
1014 |
+
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
1015 |
+
)
|
1016 |
+
if not return_dict:
|
1017 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1018 |
+
return BaseModelOutputWithPast(
|
1019 |
+
last_hidden_state=hidden_states,
|
1020 |
+
past_key_values=next_cache,
|
1021 |
+
hidden_states=all_hidden_states,
|
1022 |
+
attentions=all_self_attns,
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1026 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1027 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1028 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1029 |
+
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
|
1030 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1031 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1032 |
+
return attention_mask
|
1033 |
+
return None
|
1034 |
+
|
1035 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1036 |
+
min_dtype = torch.finfo(dtype).min
|
1037 |
+
sequence_length = input_tensor.shape[1]
|
1038 |
+
if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"): # static cache
|
1039 |
+
target_length = self.config.max_position_embeddings
|
1040 |
+
else: # dynamic cache
|
1041 |
+
target_length = (
|
1042 |
+
attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
1046 |
+
if sequence_length != 1:
|
1047 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1048 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1049 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1050 |
+
if attention_mask is not None:
|
1051 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1052 |
+
if attention_mask.dim() == 2:
|
1053 |
+
mask_length = attention_mask.shape[-1]
|
1054 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
1055 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1056 |
+
elif attention_mask.dim() == 4:
|
1057 |
+
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
1058 |
+
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
1059 |
+
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
1060 |
+
offset = cache_position[0]
|
1061 |
+
else:
|
1062 |
+
offset = 0
|
1063 |
+
mask_shape = attention_mask.shape
|
1064 |
+
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
1065 |
+
causal_mask[
|
1066 |
+
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
|
1067 |
+
] = mask_slice
|
1068 |
+
|
1069 |
+
if (
|
1070 |
+
self.config._attn_implementation == "sdpa"
|
1071 |
+
and attention_mask is not None
|
1072 |
+
and attention_mask.device.type == "cuda"
|
1073 |
+
):
|
1074 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1075 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1076 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1077 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1078 |
+
|
1079 |
+
return causal_mask
|
1080 |
+
|
1081 |
+
|
1082 |
+
class TeleFLMForCausalLM(TeleFLMPreTrainedModel):
|
1083 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1084 |
+
|
1085 |
+
def __init__(self, config):
|
1086 |
+
super().__init__(config)
|
1087 |
+
self.model = TeleFLMModel(config)
|
1088 |
+
self.vocab_size = config.vocab_size
|
1089 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1090 |
+
self.use_mup = config.use_mup
|
1091 |
+
if self.use_mup:
|
1092 |
+
self.mup_scale_factor = config.mup_scale_factor
|
1093 |
+
self.output_mult = config.output_mult / self.mup_scale_factor
|
1094 |
+
# Initialize weights and apply final processing
|
1095 |
+
self.post_init()
|
1096 |
+
|
1097 |
+
def get_input_embeddings(self):
|
1098 |
+
return self.model.embed_tokens
|
1099 |
+
|
1100 |
+
def set_input_embeddings(self, value):
|
1101 |
+
self.model.embed_tokens = value
|
1102 |
+
|
1103 |
+
def get_output_embeddings(self):
|
1104 |
+
return self.lm_head
|
1105 |
+
|
1106 |
+
def set_output_embeddings(self, new_embeddings):
|
1107 |
+
self.lm_head = new_embeddings
|
1108 |
+
|
1109 |
+
def set_decoder(self, decoder):
|
1110 |
+
self.model = decoder
|
1111 |
+
|
1112 |
+
def get_decoder(self):
|
1113 |
+
return self.model
|
1114 |
+
|
1115 |
+
@add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
|
1116 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1117 |
+
def forward(
|
1118 |
+
self,
|
1119 |
+
input_ids: torch.LongTensor = None,
|
1120 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1121 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1122 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1123 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1124 |
+
labels: Optional[torch.LongTensor] = None,
|
1125 |
+
use_cache: Optional[bool] = None,
|
1126 |
+
output_attentions: Optional[bool] = None,
|
1127 |
+
output_hidden_states: Optional[bool] = None,
|
1128 |
+
return_dict: Optional[bool] = None,
|
1129 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1130 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1131 |
+
r"""
|
1132 |
+
Args:
|
1133 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1134 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1135 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1136 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1137 |
+
|
1138 |
+
Returns:
|
1139 |
+
|
1140 |
+
Example:
|
1141 |
+
|
1142 |
+
```python
|
1143 |
+
>>> from transformers import AutoTokenizer, TeleFLMForCausalLM
|
1144 |
+
|
1145 |
+
>>> model = TeleFLMForCausalLM.from_pretrained("CofeAI/Tele-FLM")
|
1146 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("CofeAI/Tele-FLM")
|
1147 |
+
|
1148 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1149 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1150 |
+
|
1151 |
+
>>> # Generate
|
1152 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1153 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1154 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1155 |
+
```"""
|
1156 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1157 |
+
output_hidden_states = (
|
1158 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1159 |
+
)
|
1160 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1161 |
+
|
1162 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1163 |
+
outputs = self.model(
|
1164 |
+
input_ids=input_ids,
|
1165 |
+
attention_mask=attention_mask,
|
1166 |
+
position_ids=position_ids,
|
1167 |
+
past_key_values=past_key_values,
|
1168 |
+
inputs_embeds=inputs_embeds,
|
1169 |
+
use_cache=use_cache,
|
1170 |
+
output_attentions=output_attentions,
|
1171 |
+
output_hidden_states=output_hidden_states,
|
1172 |
+
return_dict=return_dict,
|
1173 |
+
cache_position=cache_position,
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
hidden_states = outputs[0]
|
1177 |
+
if self.config.pretraining_tp > 1:
|
1178 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1179 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1180 |
+
logits = torch.cat(logits, dim=-1)
|
1181 |
+
else:
|
1182 |
+
logits = self.lm_head(hidden_states)
|
1183 |
+
logits = logits.float()
|
1184 |
+
# Mup
|
1185 |
+
if self.use_mup:
|
1186 |
+
logits = logits * self.output_mult
|
1187 |
+
|
1188 |
+
loss = None
|
1189 |
+
if labels is not None:
|
1190 |
+
# Shift so that tokens < n predict n
|
1191 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1192 |
+
shift_labels = labels[..., 1:].contiguous()
|
1193 |
+
# Flatten the tokens
|
1194 |
+
loss_fct = CrossEntropyLoss()
|
1195 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1196 |
+
shift_labels = shift_labels.view(-1)
|
1197 |
+
# Enable model parallelism
|
1198 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1199 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1200 |
+
|
1201 |
+
if not return_dict:
|
1202 |
+
output = (logits,) + outputs[1:]
|
1203 |
+
return (loss,) + output if loss is not None else output
|
1204 |
+
|
1205 |
+
return CausalLMOutputWithPast(
|
1206 |
+
loss=loss,
|
1207 |
+
logits=logits,
|
1208 |
+
past_key_values=outputs.past_key_values,
|
1209 |
+
hidden_states=outputs.hidden_states,
|
1210 |
+
attentions=outputs.attentions,
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
def prepare_inputs_for_generation(
|
1214 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
|
1215 |
+
):
|
1216 |
+
# With static cache, the `past_key_values` is None
|
1217 |
+
# TODO joao: standardize interface for the different Cache classes and remove of this if
|
1218 |
+
has_static_cache = False
|
1219 |
+
if past_key_values is None:
|
1220 |
+
past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
|
1221 |
+
has_static_cache = past_key_values is not None
|
1222 |
+
|
1223 |
+
past_length = 0
|
1224 |
+
if past_key_values is not None:
|
1225 |
+
if isinstance(past_key_values, Cache):
|
1226 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
1227 |
+
max_cache_length = (
|
1228 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
1229 |
+
if past_key_values.get_max_length() is not None
|
1230 |
+
else None
|
1231 |
+
)
|
1232 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
1233 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
1234 |
+
else:
|
1235 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1236 |
+
max_cache_length = None
|
1237 |
+
|
1238 |
+
# Keep only the unprocessed tokens:
|
1239 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1240 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1241 |
+
# input)
|
1242 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1243 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1244 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1245 |
+
# input_ids based on the past_length.
|
1246 |
+
elif past_length < input_ids.shape[1]:
|
1247 |
+
input_ids = input_ids[:, past_length:]
|
1248 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1249 |
+
|
1250 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1251 |
+
if (
|
1252 |
+
max_cache_length is not None
|
1253 |
+
and attention_mask is not None
|
1254 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1255 |
+
):
|
1256 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1257 |
+
|
1258 |
+
position_ids = kwargs.get("position_ids", None)
|
1259 |
+
if attention_mask is not None and position_ids is None:
|
1260 |
+
# create position_ids on the fly for batch generation
|
1261 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1262 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1263 |
+
if past_key_values:
|
1264 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1265 |
+
|
1266 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1267 |
+
if inputs_embeds is not None and past_key_values is None:
|
1268 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1269 |
+
else:
|
1270 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1271 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1272 |
+
# TODO: use `next_tokens` directly instead.
|
1273 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
1274 |
+
|
1275 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1276 |
+
if cache_position is None:
|
1277 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1278 |
+
else:
|
1279 |
+
cache_position = cache_position[-input_length:]
|
1280 |
+
|
1281 |
+
if has_static_cache:
|
1282 |
+
past_key_values = None
|
1283 |
+
|
1284 |
+
model_inputs.update(
|
1285 |
+
{
|
1286 |
+
"position_ids": position_ids,
|
1287 |
+
"cache_position": cache_position,
|
1288 |
+
"past_key_values": past_key_values,
|
1289 |
+
"use_cache": kwargs.get("use_cache"),
|
1290 |
+
"attention_mask": attention_mask,
|
1291 |
+
}
|
1292 |
+
)
|
1293 |
+
return model_inputs
|
1294 |
+
|
1295 |
+
@staticmethod
|
1296 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1297 |
+
reordered_past = ()
|
1298 |
+
for layer_past in past_key_values:
|
1299 |
+
reordered_past += (
|
1300 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1301 |
+
)
|
1302 |
+
return reordered_past
|
1303 |
+
|
1304 |
+
|
1305 |
+
@add_start_docstrings(
|
1306 |
+
"""
|
1307 |
+
The Tele-FLM Model transformer with a sequence classification head on top (linear layer).
|
1308 |
+
|
1309 |
+
[`TeleFLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1310 |
+
(e.g. GPT-2) do.
|
1311 |
+
|
1312 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1313 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1314 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1315 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1316 |
+
each row of the batch).
|
1317 |
+
""",
|
1318 |
+
TELEFLM_START_DOCSTRING,
|
1319 |
+
)
|
1320 |
+
class TeleFLMForSequenceClassification(TeleFLMPreTrainedModel):
|
1321 |
+
def __init__(self, config):
|
1322 |
+
super().__init__(config)
|
1323 |
+
self.num_labels = config.num_labels
|
1324 |
+
self.model = TeleFLMModel(config)
|
1325 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1326 |
+
|
1327 |
+
# Initialize weights and apply final processing
|
1328 |
+
self.post_init()
|
1329 |
+
|
1330 |
+
def get_input_embeddings(self):
|
1331 |
+
return self.model.embed_tokens
|
1332 |
+
|
1333 |
+
def set_input_embeddings(self, value):
|
1334 |
+
self.model.embed_tokens = value
|
1335 |
+
|
1336 |
+
@add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
|
1337 |
+
def forward(
|
1338 |
+
self,
|
1339 |
+
input_ids: torch.LongTensor = None,
|
1340 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1341 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1342 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1343 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1344 |
+
labels: Optional[torch.LongTensor] = None,
|
1345 |
+
use_cache: Optional[bool] = None,
|
1346 |
+
output_attentions: Optional[bool] = None,
|
1347 |
+
output_hidden_states: Optional[bool] = None,
|
1348 |
+
return_dict: Optional[bool] = None,
|
1349 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1350 |
+
r"""
|
1351 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1352 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1353 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1354 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1355 |
+
"""
|
1356 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1357 |
+
|
1358 |
+
transformer_outputs = self.model(
|
1359 |
+
input_ids,
|
1360 |
+
attention_mask=attention_mask,
|
1361 |
+
position_ids=position_ids,
|
1362 |
+
past_key_values=past_key_values,
|
1363 |
+
inputs_embeds=inputs_embeds,
|
1364 |
+
use_cache=use_cache,
|
1365 |
+
output_attentions=output_attentions,
|
1366 |
+
output_hidden_states=output_hidden_states,
|
1367 |
+
return_dict=return_dict,
|
1368 |
+
)
|
1369 |
+
hidden_states = transformer_outputs[0]
|
1370 |
+
logits = self.score(hidden_states)
|
1371 |
+
|
1372 |
+
if input_ids is not None:
|
1373 |
+
batch_size = input_ids.shape[0]
|
1374 |
+
else:
|
1375 |
+
batch_size = inputs_embeds.shape[0]
|
1376 |
+
|
1377 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1378 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1379 |
+
if self.config.pad_token_id is None:
|
1380 |
+
sequence_lengths = -1
|
1381 |
+
else:
|
1382 |
+
if input_ids is not None:
|
1383 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1384 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1385 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1386 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1387 |
+
else:
|
1388 |
+
sequence_lengths = -1
|
1389 |
+
|
1390 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1391 |
+
|
1392 |
+
loss = None
|
1393 |
+
if labels is not None:
|
1394 |
+
labels = labels.to(logits.device)
|
1395 |
+
if self.config.problem_type is None:
|
1396 |
+
if self.num_labels == 1:
|
1397 |
+
self.config.problem_type = "regression"
|
1398 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1399 |
+
self.config.problem_type = "single_label_classification"
|
1400 |
+
else:
|
1401 |
+
self.config.problem_type = "multi_label_classification"
|
1402 |
+
|
1403 |
+
if self.config.problem_type == "regression":
|
1404 |
+
loss_fct = MSELoss()
|
1405 |
+
if self.num_labels == 1:
|
1406 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1407 |
+
else:
|
1408 |
+
loss = loss_fct(pooled_logits, labels)
|
1409 |
+
elif self.config.problem_type == "single_label_classification":
|
1410 |
+
loss_fct = CrossEntropyLoss()
|
1411 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1412 |
+
elif self.config.problem_type == "multi_label_classification":
|
1413 |
+
loss_fct = BCEWithLogitsLoss()
|
1414 |
+
loss = loss_fct(pooled_logits, labels)
|
1415 |
+
if not return_dict:
|
1416 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1417 |
+
return ((loss,) + output) if loss is not None else output
|
1418 |
+
|
1419 |
+
return SequenceClassifierOutputWithPast(
|
1420 |
+
loss=loss,
|
1421 |
+
logits=pooled_logits,
|
1422 |
+
past_key_values=transformer_outputs.past_key_values,
|
1423 |
+
hidden_states=transformer_outputs.hidden_states,
|
1424 |
+
attentions=transformer_outputs.attentions,
|
1425 |
+
)
|
1426 |
+
|
1427 |
+
|
1428 |
+
@add_start_docstrings(
|
1429 |
+
"""
|
1430 |
+
The TeleFLM Model transformer with a span classification head on top for extractive question-answering tasks like
|
1431 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1432 |
+
""",
|
1433 |
+
TELEFLM_START_DOCSTRING,
|
1434 |
+
)
|
1435 |
+
class TeleFLMForQuestionAnswering(TeleFLMPreTrainedModel):
|
1436 |
+
base_model_prefix = "transformer"
|
1437 |
+
|
1438 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->TeleFLM
|
1439 |
+
def __init__(self, config):
|
1440 |
+
super().__init__(config)
|
1441 |
+
self.transformer = TeleFLMModel(config)
|
1442 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1443 |
+
|
1444 |
+
# Initialize weights and apply final processing
|
1445 |
+
self.post_init()
|
1446 |
+
|
1447 |
+
def get_input_embeddings(self):
|
1448 |
+
return self.transformer.embed_tokens
|
1449 |
+
|
1450 |
+
def set_input_embeddings(self, value):
|
1451 |
+
self.transformer.embed_tokens = value
|
1452 |
+
|
1453 |
+
@add_start_docstrings_to_model_forward(TELEFLM_INPUTS_DOCSTRING)
|
1454 |
+
def forward(
|
1455 |
+
self,
|
1456 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1457 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1458 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1459 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1460 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1461 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1462 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1463 |
+
output_attentions: Optional[bool] = None,
|
1464 |
+
output_hidden_states: Optional[bool] = None,
|
1465 |
+
return_dict: Optional[bool] = None,
|
1466 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1467 |
+
r"""
|
1468 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1469 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1470 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1471 |
+
are not taken into account for computing the loss.
|
1472 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1473 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1474 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1475 |
+
are not taken into account for computing the loss.
|
1476 |
+
"""
|
1477 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1478 |
+
|
1479 |
+
outputs = self.transformer(
|
1480 |
+
input_ids,
|
1481 |
+
attention_mask=attention_mask,
|
1482 |
+
position_ids=position_ids,
|
1483 |
+
past_key_values=past_key_values,
|
1484 |
+
inputs_embeds=inputs_embeds,
|
1485 |
+
output_attentions=output_attentions,
|
1486 |
+
output_hidden_states=output_hidden_states,
|
1487 |
+
return_dict=return_dict,
|
1488 |
+
)
|
1489 |
+
|
1490 |
+
sequence_output = outputs[0]
|
1491 |
+
|
1492 |
+
logits = self.qa_outputs(sequence_output)
|
1493 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1494 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1495 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1496 |
+
|
1497 |
+
total_loss = None
|
1498 |
+
if start_positions is not None and end_positions is not None:
|
1499 |
+
# If we are on multi-GPU, split add a dimension
|
1500 |
+
if len(start_positions.size()) > 1:
|
1501 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1502 |
+
if len(end_positions.size()) > 1:
|
1503 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1504 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1505 |
+
ignored_index = start_logits.size(1)
|
1506 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1507 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1508 |
+
|
1509 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1510 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1511 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1512 |
+
total_loss = (start_loss + end_loss) / 2
|
1513 |
+
|
1514 |
+
if not return_dict:
|
1515 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1516 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1517 |
+
|
1518 |
+
return QuestionAnsweringModelOutput(
|
1519 |
+
loss=total_loss,
|
1520 |
+
start_logits=start_logits,
|
1521 |
+
end_logits=end_logits,
|
1522 |
+
hidden_states=outputs.hidden_states,
|
1523 |
+
attentions=outputs.attentions,
|
1524 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<pad>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenization_teleflm.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
"""Tokenization classes for Tele-FLM."""
|
22 |
+
import os
|
23 |
+
from shutil import copyfile
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
25 |
+
|
26 |
+
import sentencepiece as spm
|
27 |
+
import re
|
28 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
29 |
+
from transformers import AddedToken, PreTrainedTokenizer
|
30 |
+
from transformers.utils import logging
|
31 |
+
from transformers.tokenization_utils_base import TextInput
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
36 |
+
|
37 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
38 |
+
"vocab_file": {},
|
39 |
+
"tokenizer_file": {},
|
40 |
+
}
|
41 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
42 |
+
"teleflm-tokenizer": 8192,
|
43 |
+
}
|
44 |
+
SPIECE_UNDERLINE = "▁"
|
45 |
+
|
46 |
+
|
47 |
+
class TeleFLMTokenizer(PreTrainedTokenizer):
|
48 |
+
"""
|
49 |
+
Construct a Tele-FLM tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
|
50 |
+
no padding token in the original model.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
vocab_file (`str`):
|
54 |
+
Path to the vocabulary file.
|
55 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
56 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
57 |
+
token instead.
|
58 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
59 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
60 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
61 |
+
The end of sequence token.
|
62 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
63 |
+
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
64 |
+
attention mechanisms or loss computation.
|
65 |
+
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
|
66 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
67 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
68 |
+
to set:
|
69 |
+
|
70 |
+
- `enable_sampling`: Enable subword regularization.
|
71 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
72 |
+
|
73 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
74 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
75 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
76 |
+
using forward-filtering-and-backward-sampling algorithm.
|
77 |
+
|
78 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
79 |
+
BPE-dropout.
|
80 |
+
|
81 |
+
add_bos_token (`bool`, *optional*, defaults to `True`):
|
82 |
+
Whether or not to add an `bos_token` at the start of sequences.
|
83 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
84 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
85 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
86 |
+
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
87 |
+
extra spaces.
|
88 |
+
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
|
89 |
+
Whether or not to add spaces between special tokens.
|
90 |
+
|
91 |
+
"""
|
92 |
+
|
93 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
94 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
95 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
96 |
+
model_input_names = ["input_ids", "attention_mask"]
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
vocab_file,
|
101 |
+
bos_token="<s>",
|
102 |
+
eos_token="</s>",
|
103 |
+
unk_token="<unk>",
|
104 |
+
pad_token=None,
|
105 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
106 |
+
add_bos_token=False,
|
107 |
+
add_eos_token=False,
|
108 |
+
clean_up_tokenization_spaces=False,
|
109 |
+
spaces_between_special_tokens=False,
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
113 |
+
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
|
114 |
+
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
|
115 |
+
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
|
116 |
+
self.vocab_file = vocab_file
|
117 |
+
self.add_bos_token = add_bos_token
|
118 |
+
self.add_eos_token = add_eos_token
|
119 |
+
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
|
120 |
+
super().__init__(
|
121 |
+
bos_token=bos_token,
|
122 |
+
eos_token=eos_token,
|
123 |
+
unk_token=unk_token,
|
124 |
+
pad_token=pad_token,
|
125 |
+
add_bos_token=add_bos_token,
|
126 |
+
add_eos_token=add_eos_token,
|
127 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
128 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
129 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
130 |
+
**kwargs,
|
131 |
+
)
|
132 |
+
|
133 |
+
@property
|
134 |
+
def unk_token_length(self):
|
135 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
136 |
+
|
137 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
|
138 |
+
def get_spm_processor(self, from_slow=False):
|
139 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
140 |
+
with open(self.vocab_file, "rb") as f:
|
141 |
+
sp_model = f.read()
|
142 |
+
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
|
143 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
144 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
145 |
+
normalizer_spec.add_dummy_prefix = True
|
146 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
147 |
+
sp_model = model.SerializeToString()
|
148 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
149 |
+
return tokenizer
|
150 |
+
|
151 |
+
def __getstate__(self):
|
152 |
+
state = self.__dict__.copy()
|
153 |
+
state["sp_model"] = None
|
154 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
155 |
+
return state
|
156 |
+
|
157 |
+
def __setstate__(self, d):
|
158 |
+
self.__dict__ = d
|
159 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
160 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
161 |
+
|
162 |
+
@property
|
163 |
+
def vocab_size(self):
|
164 |
+
"""Returns vocab size"""
|
165 |
+
return self.sp_model.get_piece_size()
|
166 |
+
|
167 |
+
def get_vocab(self):
|
168 |
+
"""Returns vocab as a dict"""
|
169 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
170 |
+
vocab.update(self.added_tokens_encoder)
|
171 |
+
return vocab
|
172 |
+
|
173 |
+
def tokenize(self, text: TextInput, **kwargs) -> List[str]:
|
174 |
+
"""
|
175 |
+
Converts a string in a sequence of tokens, using the tokenizer.
|
176 |
+
|
177 |
+
Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies
|
178 |
+
(BPE/SentencePieces/WordPieces). Takes care of added tokens.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
text (`str`):
|
182 |
+
The sequence to be encoded.
|
183 |
+
**kwargs (additional keyword arguments):
|
184 |
+
Passed along to the model-specific `prepare_for_tokenization` preprocessing method.
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
`List[str]`: The list of tokens.
|
188 |
+
"""
|
189 |
+
split_special_tokens = kwargs.pop("split_special_tokens", self.split_special_tokens)
|
190 |
+
remove_dummy_prefix = kwargs.pop("remove_dummy_prefix", False)
|
191 |
+
|
192 |
+
text, kwargs = self.prepare_for_tokenization(text, **kwargs)
|
193 |
+
|
194 |
+
if kwargs:
|
195 |
+
logger.warning(f"Keyword arguments {kwargs} not recognized.")
|
196 |
+
|
197 |
+
if hasattr(self, "do_lower_case") and self.do_lower_case:
|
198 |
+
# convert non-special tokens to lowercase. Might be super slow as well?
|
199 |
+
escaped_special_toks = [re.escape(s_tok) for s_tok in (self.all_special_tokens)]
|
200 |
+
escaped_special_toks += [
|
201 |
+
re.escape(s_tok.content)
|
202 |
+
for s_tok in (self._added_tokens_decoder.values())
|
203 |
+
if not s_tok.special and s_tok.normalized
|
204 |
+
]
|
205 |
+
pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)"
|
206 |
+
text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text)
|
207 |
+
|
208 |
+
if split_special_tokens:
|
209 |
+
no_split_token = []
|
210 |
+
tokens = [text]
|
211 |
+
else:
|
212 |
+
no_split_token = self._added_tokens_encoder.keys() # don't split on any of the added tokens
|
213 |
+
# "This is something<special_token_1> else"
|
214 |
+
tokens = self.tokens_trie.split(text)
|
215 |
+
|
216 |
+
# ["This is something", "<special_token_1>", " else"]
|
217 |
+
for i, token in enumerate(tokens):
|
218 |
+
if token in no_split_token:
|
219 |
+
tok_extended = self._added_tokens_decoder.get(self._added_tokens_encoder[token], None)
|
220 |
+
left = tokens[i - 1] if i > 0 else None
|
221 |
+
right = tokens[i + 1] if i < len(tokens) - 1 else None
|
222 |
+
if isinstance(tok_extended, AddedToken):
|
223 |
+
if tok_extended.rstrip and right:
|
224 |
+
# A bit counter-intuitive but we strip the left of the string
|
225 |
+
# since tok_extended.rstrip means the special token is eating all white spaces on its right
|
226 |
+
tokens[i + 1] = right.lstrip()
|
227 |
+
# Strip white spaces on the left
|
228 |
+
if tok_extended.lstrip and left:
|
229 |
+
tokens[i - 1] = left.rstrip() # Opposite here
|
230 |
+
if tok_extended.single_word and left and left[-1] != " ":
|
231 |
+
tokens[i - 1] += token
|
232 |
+
tokens[i] = ""
|
233 |
+
elif tok_extended.single_word and right and right[0] != " ":
|
234 |
+
tokens[i + 1] = token + tokens[i + 1]
|
235 |
+
tokens[i] = ""
|
236 |
+
else:
|
237 |
+
raise ValueError(
|
238 |
+
f"{tok_extended} cannot be tokenized because it was not properly added"
|
239 |
+
f" to the tokenizer. This means that it is not an `AddedToken` but a {type(tok_extended)}"
|
240 |
+
)
|
241 |
+
# ["This is something", "<special_token_1>", "else"]
|
242 |
+
tokenized_text = []
|
243 |
+
for token in tokens:
|
244 |
+
# Need to skip eventual empty (fully stripped) tokens
|
245 |
+
if not token:
|
246 |
+
continue
|
247 |
+
if token in no_split_token:
|
248 |
+
tokenized_text.append(token)
|
249 |
+
else:
|
250 |
+
tokenized_text.extend(self._tokenize(token, remove_dummy_prefix=remove_dummy_prefix))
|
251 |
+
# ["This", " is", " something", "<special_token_1>", "else"]
|
252 |
+
return tokenized_text
|
253 |
+
|
254 |
+
def _tokenize(self, text, **kwargs):
|
255 |
+
"""
|
256 |
+
Returns a tokenized string.
|
257 |
+
|
258 |
+
We add a option to remove dummpy prefix during tokenization instead of changing the default behaviour of the sentencepiece tokenizer.
|
259 |
+
This is useful when there're two tokenized sentences to be merged into one as the last one will have an extra dummy prefix which results in a
|
260 |
+
inconsistant pattern.
|
261 |
+
"""
|
262 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
263 |
+
if text.startswith((SPIECE_UNDERLINE, " ")):
|
264 |
+
return tokens
|
265 |
+
if len(tokens) > 0 and kwargs.get("remove_dummy_prefix") is True:
|
266 |
+
tokens[0] = tokens[0].replace(SPIECE_UNDERLINE, "", 1)
|
267 |
+
return tokens
|
268 |
+
|
269 |
+
def _convert_token_to_id(self, token):
|
270 |
+
"""Converts a token (str) in an id using the vocab."""
|
271 |
+
return self.sp_model.piece_to_id(token)
|
272 |
+
|
273 |
+
def _convert_id_to_token(self, index):
|
274 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
275 |
+
token = self.sp_model.IdToPiece(index)
|
276 |
+
return token
|
277 |
+
|
278 |
+
def convert_tokens_to_string(self, tokens):
|
279 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
280 |
+
current_sub_tokens = []
|
281 |
+
out_string = ""
|
282 |
+
# prev_is_special = False
|
283 |
+
for i, token in enumerate(tokens):
|
284 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
285 |
+
if token in self.all_special_tokens:
|
286 |
+
# if not prev_is_special and i != 0 and self.legacy:
|
287 |
+
# out_string += " "
|
288 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
289 |
+
# prev_is_special = True
|
290 |
+
current_sub_tokens = []
|
291 |
+
else:
|
292 |
+
current_sub_tokens.append(token)
|
293 |
+
# prev_is_special = False
|
294 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
295 |
+
return out_string
|
296 |
+
|
297 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
298 |
+
"""
|
299 |
+
Save the vocabulary and special tokens file to a directory.
|
300 |
+
|
301 |
+
Args:
|
302 |
+
save_directory (`str`):
|
303 |
+
The directory in which to save the vocabulary.
|
304 |
+
|
305 |
+
Returns:
|
306 |
+
`Tuple(str)`: Paths to the files saved.
|
307 |
+
"""
|
308 |
+
if not os.path.isdir(save_directory):
|
309 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
310 |
+
return
|
311 |
+
out_vocab_file = os.path.join(
|
312 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
313 |
+
)
|
314 |
+
|
315 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
316 |
+
copyfile(self.vocab_file, out_vocab_file)
|
317 |
+
elif not os.path.isfile(self.vocab_file):
|
318 |
+
with open(out_vocab_file, "wb") as fi:
|
319 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
320 |
+
fi.write(content_spiece_model)
|
321 |
+
|
322 |
+
return (out_vocab_file,)
|
323 |
+
|
324 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
325 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
326 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
327 |
+
|
328 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
329 |
+
|
330 |
+
if token_ids_1 is not None:
|
331 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
332 |
+
|
333 |
+
return output
|
334 |
+
|
335 |
+
def get_special_tokens_mask(
|
336 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
337 |
+
) -> List[int]:
|
338 |
+
"""
|
339 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
340 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
341 |
+
|
342 |
+
Args:
|
343 |
+
token_ids_0 (`List[int]`):
|
344 |
+
List of IDs.
|
345 |
+
token_ids_1 (`List[int]`, *optional*):
|
346 |
+
Optional second list of IDs for sequence pairs.
|
347 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
348 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
352 |
+
"""
|
353 |
+
if already_has_special_tokens:
|
354 |
+
return super().get_special_tokens_mask(
|
355 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
356 |
+
)
|
357 |
+
|
358 |
+
bos_token_id = [1] if self.add_bos_token else []
|
359 |
+
eos_token_id = [1] if self.add_eos_token else []
|
360 |
+
|
361 |
+
if token_ids_1 is None:
|
362 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
363 |
+
return (
|
364 |
+
bos_token_id
|
365 |
+
+ ([0] * len(token_ids_0))
|
366 |
+
+ eos_token_id
|
367 |
+
+ bos_token_id
|
368 |
+
+ ([0] * len(token_ids_1))
|
369 |
+
+ eos_token_id
|
370 |
+
)
|
371 |
+
|
372 |
+
def create_token_type_ids_from_sequences(
|
373 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
374 |
+
) -> List[int]:
|
375 |
+
"""
|
376 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
377 |
+
sequence pair mask has the following format:
|
378 |
+
|
379 |
+
```
|
380 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
381 |
+
| first sequence | second sequence |
|
382 |
+
```
|
383 |
+
|
384 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
385 |
+
|
386 |
+
Args:
|
387 |
+
token_ids_0 (`List[int]`):
|
388 |
+
List of ids.
|
389 |
+
token_ids_1 (`List[int]`, *optional*):
|
390 |
+
Optional second list of IDs for sequence pairs.
|
391 |
+
|
392 |
+
Returns:
|
393 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
394 |
+
"""
|
395 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
396 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
397 |
+
|
398 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
399 |
+
|
400 |
+
if token_ids_1 is not None:
|
401 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
402 |
+
|
403 |
+
return output
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e2bf2c2d38bab8a4d7107e36073be27be40a625b2f4e57f5a0609bdb70deed8
|
3 |
+
size 1159468
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<pad>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"auto_map": {
|
39 |
+
"AutoTokenizer": [
|
40 |
+
"tokenization_teleflm.TeleFLMTokenizer",
|
41 |
+
null
|
42 |
+
]
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"eos_token": "</s>",
|
47 |
+
"model_max_length": 8192,
|
48 |
+
"pad_token": "<pad>",
|
49 |
+
"sp_model_kwargs": {},
|
50 |
+
"spaces_between_special_tokens": false,
|
51 |
+
"tokenizer_class": "TeleFLMTokenizer",
|
52 |
+
"unk_token": "<unk>",
|
53 |
+
"use_fast": false
|
54 |
+
}
|