|
from transformers import T5ForConditionalGeneration as t5FCG |
|
from transformers.models.t5.configuration_t5 import T5Config |
|
from typing import Optional, Tuple, Union, List, Callable |
|
|
|
|
|
|
|
|
|
|
|
|
|
class T5ForConditionalGeneration(t5FCG): |
|
|
|
def __init__(self, config: T5Config): |
|
super().__init__(config) |
|
|
|
|
|
def preprocess(self,text): |
|
text = text.replace("\n", "\\n").replace("\t", "\\t") |
|
return text |
|
|
|
def postprocess(self,text): |
|
return text.replace("\\n", "\n").replace("\\t", "\t").replace('%20',' ') |
|
|
|
|
|
def get_response(self,tokenizer,text, sample=True, top_p=0.9, temperature=0.7,max_length=1024,no_repeat_ngram_size=12,num_beams=1, length_penalty=0.6): |
|
base_info = "用户:你是谁?\n小元:我是元语智能公司研发的AI智能助手, 在不违反原则的情况下,我可以回答你的任何问题。\n" |
|
text=base_info+text |
|
text = self.preprocess(text) |
|
|
|
|
|
encoding = tokenizer(text=[text], truncation=True, padding=True, max_length=max_length, return_tensors="pt").to(self.device) |
|
if not sample: |
|
out = self.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=max_length, num_beams=num_beams, length_penalty=length_penalty,do_sample=False) |
|
else: |
|
out = self.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=max_length, do_sample=True, top_p=top_p, temperature=temperature, no_repeat_ngram_size=no_repeat_ngram_size) |
|
out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True) |
|
return self.postprocess(out_text[0]) |
|
|
|
|
|
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, sample=True, top_p=0.9, temperature=0.7,max_length=1024,no_repeat_ngram_size=12,num_beams=1, length_penalty=0.6): |
|
|
|
|
|
history = history or [] |
|
if len(history) > 5: |
|
history = history[-5:] |
|
|
|
context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history]) |
|
|
|
|
|
input_text = context + "\n用户:" + query + "\n小元:" |
|
input_text = input_text.strip() |
|
response = self.get_response(tokenizer,input_text,sample=sample, top_p=top_p, temperature=temperature,max_length=max_length,no_repeat_ngram_size=no_repeat_ngram_size,num_beams=num_beams, length_penalty=length_penalty) |
|
|
|
history.append((query, response)) |
|
return response,history |
|
|