CiaraRowles
commited on
Commit
•
522db09
1
Parent(s):
dc9d306
script to run
Browse files- runtemporalnetxl.py +110 -0
runtemporalnetxl.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import argparse
|
5 |
+
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
6 |
+
from diffusers.utils import load_image
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
def split_video_into_frames(video_path, frames_dir):
|
11 |
+
if not os.path.exists(frames_dir):
|
12 |
+
os.makedirs(frames_dir)
|
13 |
+
print("splitting video")
|
14 |
+
vidcap = cv2.VideoCapture(video_path)
|
15 |
+
success, image = vidcap.read()
|
16 |
+
count = 0
|
17 |
+
while success:
|
18 |
+
frame_path = os.path.join(frames_dir, f"frame{count:04d}.png")
|
19 |
+
cv2.imwrite(frame_path, image)
|
20 |
+
success, image = vidcap.read()
|
21 |
+
count += 1
|
22 |
+
|
23 |
+
def frame_number(frame_filename):
|
24 |
+
# Extract the frame number from the filename and convert it to an integer
|
25 |
+
return int(frame_filename[5:-4])
|
26 |
+
|
27 |
+
# Argument parser
|
28 |
+
parser = argparse.ArgumentParser(description='Generate images based on video frames.')
|
29 |
+
parser.add_argument('--prompt',default='a woman',help='the stable diffusion prompt')
|
30 |
+
parser.add_argument('--video_path', default='./None.mp4', help='Path to the input video file.')
|
31 |
+
parser.add_argument('--frames_dir', default='./frames', help='Directory to save the extracted video frames.')
|
32 |
+
parser.add_argument('--output_frames_dir', default='./output_frames', help='Directory to save the generated images.')
|
33 |
+
parser.add_argument('--init_image_path', default=None, help='Path to the initial conditioning image.')
|
34 |
+
|
35 |
+
args = parser.parse_args()
|
36 |
+
|
37 |
+
video_path = args.video_path
|
38 |
+
frames_dir = args.frames_dir
|
39 |
+
output_frames_dir = args.output_frames_dir
|
40 |
+
init_image_path = args.init_image_path
|
41 |
+
prompt = args.prompt
|
42 |
+
|
43 |
+
# If frames do not already exist, split video into frames
|
44 |
+
if not os.path.exists(frames_dir):
|
45 |
+
split_video_into_frames(video_path, frames_dir)
|
46 |
+
|
47 |
+
# Create output frames directory if it doesn't exist
|
48 |
+
if not os.path.exists(output_frames_dir):
|
49 |
+
os.makedirs(output_frames_dir)
|
50 |
+
|
51 |
+
# Load the initial conditioning image, if provided
|
52 |
+
if init_image_path:
|
53 |
+
print(f"using image {init_image_path}")
|
54 |
+
last_generated_image = load_image(init_image_path)
|
55 |
+
else:
|
56 |
+
initial_frame_path = os.path.join(frames_dir, "frame0000.png")
|
57 |
+
last_generated_image = load_image(initial_frame_path)
|
58 |
+
|
59 |
+
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
60 |
+
controlnet1_path = "CiaraRowles/TemporalNet1XL"
|
61 |
+
controlnet2_path = "diffusers/controlnet-canny-sdxl-1.0"
|
62 |
+
|
63 |
+
controlnet = [
|
64 |
+
ControlNetModel.from_pretrained(controlnet1_path, torch_dtype=torch.float16),
|
65 |
+
ControlNetModel.from_pretrained(controlnet2_path, torch_dtype=torch.float16)
|
66 |
+
]
|
67 |
+
#controlnet = ControlNetModel.from_pretrained(controlnet2_path, torch_dtype=torch.float16)
|
68 |
+
|
69 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
70 |
+
base_model_path, controlnet=controlnet, torch_dtype=torch.float16
|
71 |
+
)
|
72 |
+
|
73 |
+
#pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
74 |
+
#pipe.enable_xformers_memory_efficient_attention()
|
75 |
+
pipe.enable_model_cpu_offload()
|
76 |
+
|
77 |
+
generator = torch.manual_seed(7)
|
78 |
+
|
79 |
+
# Loop over the saved frames in numerical order
|
80 |
+
frame_files = sorted(os.listdir(frames_dir), key=frame_number)
|
81 |
+
|
82 |
+
for i, frame_file in enumerate(frame_files):
|
83 |
+
# Use the original video frame to create Canny edge-detected image as the conditioning image for the first ControlNetModel
|
84 |
+
control_image_path = os.path.join(frames_dir, frame_file)
|
85 |
+
control_image = load_image(control_image_path)
|
86 |
+
|
87 |
+
canny_image = np.array(control_image)
|
88 |
+
canny_image = cv2.Canny(canny_image, 25, 200)
|
89 |
+
canny_image = canny_image[:, :, None]
|
90 |
+
canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
|
91 |
+
canny_image = Image.fromarray(canny_image)
|
92 |
+
|
93 |
+
# Generate image
|
94 |
+
image = pipe(
|
95 |
+
prompt, num_inference_steps=20, generator=generator, image=[last_generated_image, canny_image], controlnet_conditioning_scale=[0.6, 0.7]
|
96 |
+
#prompt, num_inference_steps=20, generator=generator, image=canny_image, controlnet_conditioning_scale=0.5
|
97 |
+
).images[0]
|
98 |
+
|
99 |
+
# Save the generated image to output folder
|
100 |
+
output_path = os.path.join(output_frames_dir, f"output{str(i).zfill(4)}.png")
|
101 |
+
image.save(output_path)
|
102 |
+
|
103 |
+
# Save the Canny image for reference
|
104 |
+
canny_image_path = os.path.join(output_frames_dir, f"outputcanny{str(i).zfill(4)}.png")
|
105 |
+
canny_image.save(canny_image_path)
|
106 |
+
|
107 |
+
# Update the last_generated_image with the newly generated image for the next iteration
|
108 |
+
last_generated_image = image
|
109 |
+
|
110 |
+
print(f"Saved generated image for frame {i} to {output_path}")
|