File size: 7,294 Bytes
7466a89
 
 
 
 
b7fb1f2
7466a89
 
 
 
 
 
 
 
 
 
 
 
 
3cad9f4
 
 
 
 
 
 
 
 
7466a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cad9f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7466a89
 
 
 
3cad9f4
7466a89
3cad9f4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
library_name: transformers
tags:
- trl
- dpo
- alignment-handbook
- generated_from_trainer
model-index:
- name: OpenELM-1_1B-DPO-full-max-reward-most-similar
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# OpenELM-1_1B-DPO-full-max-reward-most-similar

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6465
- Rewards/chosen: -17.75
- Rewards/rejected: -19.75
- Rewards/accuracies: 0.6055
- Rewards/margins: 2.0469
- Logps/rejected: -2272.0
- Logps/chosen: -2096.0
- Logits/rejected: 2.0312
- Logits/chosen: 0.2393

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5786        | 0.1047 | 100  | 0.6689          | -1.8203        | -2.0625          | 0.6094             | 0.2373          | -494.0         | -500.0       | -9.25           | -9.75         |
| 0.5359        | 0.2094 | 200  | 0.7366          | -3.3281        | -3.8125          | 0.5898             | 0.4824          | -672.0         | -652.0       | -1.7812         | -2.8906       |
| 0.5163        | 0.3141 | 300  | 0.6974          | -4.25          | -4.8438          | 0.6426             | 0.6016          | -776.0         | -744.0       | -5.4688         | -6.75         |
| 0.5127        | 0.4188 | 400  | 0.7937          | -5.375         | -6.0625          | 0.6016             | 0.6797          | -896.0         | -856.0       | -7.9375         | -9.125        |
| 0.5047        | 0.5236 | 500  | 0.7909          | -4.5938        | -5.2188          | 0.5703             | 0.6523          | -812.0         | -776.0       | -3.7188         | -5.5938       |
| 0.5057        | 0.6283 | 600  | 0.8288          | -5.375         | -6.125           | 0.5918             | 0.7539          | -904.0         | -856.0       | -4.5            | -6.4062       |
| 0.48          | 0.7330 | 700  | 0.7987          | -5.5312        | -6.4062          | 0.6289             | 0.8633          | -928.0         | -872.0       | -3.8438         | -5.6562       |
| 0.4751        | 0.8377 | 800  | 0.8430          | -7.0625        | -7.7812          | 0.5586             | 0.7070          | -1064.0        | -1024.0      | -4.3125         | -6.125        |
| 0.4408        | 0.9424 | 900  | 0.8971          | -8.3125        | -9.1875          | 0.5996             | 0.9023          | -1208.0        | -1152.0      | -6.3438         | -8.1875       |
| 0.1609        | 1.0471 | 1000 | 0.9796          | -8.1875        | -9.1875          | 0.5996             | 1.0156          | -1208.0        | -1136.0      | -1.7734         | -3.7656       |
| 0.1551        | 1.1518 | 1100 | 1.2334          | -13.8125       | -15.0625         | 0.5938             | 1.2422          | -1792.0        | -1704.0      | -0.2617         | -2.0312       |
| 0.1584        | 1.2565 | 1200 | 1.0642          | -10.375        | -11.5625         | 0.5918             | 1.1641          | -1440.0        | -1360.0      | -2.1875         | -3.9844       |
| 0.1618        | 1.3613 | 1300 | 0.9750          | -9.1875        | -10.3125         | 0.6211             | 1.1484          | -1320.0        | -1240.0      | -1.25           | -3.0781       |
| 0.1667        | 1.4660 | 1400 | 1.0401          | -9.75          | -11.125          | 0.6191             | 1.3125          | -1400.0        | -1296.0      | -1.1094         | -3.1875       |
| 0.1714        | 1.5707 | 1500 | 1.0380          | -10.6875       | -12.0625         | 0.6230             | 1.3438          | -1496.0        | -1392.0      | -0.2578         | -2.1719       |
| 0.1406        | 1.6754 | 1600 | 1.0427          | -11.25         | -12.625          | 0.6211             | 1.375           | -1552.0        | -1440.0      | -0.0874         | -2.0469       |
| 0.1195        | 1.7801 | 1700 | 1.1374          | -12.25         | -13.625          | 0.6133             | 1.3906          | -1648.0        | -1544.0      | -0.4316         | -2.1875       |
| 0.1291        | 1.8848 | 1800 | 1.0742          | -11.6875       | -13.0625         | 0.5938             | 1.3438          | -1592.0        | -1488.0      | 0.0305          | -1.7344       |
| 0.1236        | 1.9895 | 1900 | 1.1539          | -13.0          | -14.375          | 0.5840             | 1.3984          | -1728.0        | -1616.0      | 0.7383          | -0.9727       |
| 0.0264        | 2.0942 | 2000 | 1.5533          | -16.5          | -18.25           | 0.5840             | 1.75            | -2112.0        | -1968.0      | 1.1562          | -0.625        |
| 0.0222        | 2.1990 | 2100 | 1.6053          | -17.375        | -19.25           | 0.5957             | 1.8906          | -2224.0        | -2064.0      | 2.0781          | 0.3105        |
| 0.0266        | 2.3037 | 2200 | 1.5843          | -17.125        | -19.0            | 0.6055             | 1.8672          | -2192.0        | -2032.0      | 1.9297          | 0.0918        |
| 0.0247        | 2.4084 | 2300 | 1.6309          | -17.875        | -19.875          | 0.6094             | 2.0             | -2288.0        | -2112.0      | 2.1719          | 0.3652        |
| 0.0381        | 2.5131 | 2400 | 1.6237          | -17.75         | -19.625          | 0.6055             | 1.9219          | -2256.0        | -2096.0      | 2.0             | 0.2354        |
| 0.0307        | 2.6178 | 2500 | 1.6102          | -17.375        | -19.375          | 0.6055             | 2.0156          | -2224.0        | -2064.0      | 1.9141          | 0.1069        |
| 0.0259        | 2.7225 | 2600 | 1.6399          | -17.75         | -19.75           | 0.6035             | 2.0469          | -2272.0        | -2096.0      | 2.0469          | 0.2773        |
| 0.0279        | 2.8272 | 2700 | 1.6252          | -17.5          | -19.5            | 0.6074             | 2.0312          | -2240.0        | -2064.0      | 1.9609          | 0.1533        |
| 0.0219        | 2.9319 | 2800 | 1.6465          | -17.75         | -19.75           | 0.6055             | 2.0469          | -2272.0        | -2096.0      | 2.0312          | 0.2393        |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.3.0
- Datasets 3.0.1
- Tokenizers 0.20.0