--- language: de license: mit tags: - pytorch - causal-lm datasets: - c4 --- # Cedille AI Cedille is a project to bring large language models to non-English languages. ## de-anna Anna is a 6B parameter autoregressive language model based on the GPT-J architecture and trained using the [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) codebase. Anna was trained on German text with a similar methodology to [Boris](https://huggingface.co/Cedille/fr-boris), our French model. We started training from GPT-J, which has been trained on [The Pile](https://pile.eleuther.ai/). As a consequence the model still has good performance in English language. Anna makes use of the unmodified GPT-2 tokenizer. # How to run ## Loading the model ### Base (requires 48+ GB of RAM) ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Cedille/de-anna") model = AutoModelForCausalLM.from_pretrained("Cedille/de-anna") ``` ### Lower memory usage Loading a model with Huggingface requires two copies of the weights, so 48+ GB of RAM for [GPT-J models](https://huggingface.co/docs/transformers/v4.15.0/model_doc/gptj) in float32 precision. The first trick would be to load the model with the specific argument below to load only one copy of the weights. ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Cedille/de-anna") model = AutoModelForCausalLM.from_pretrained("Cedille/de-anna", low_cup_mem_usage=True) ``` We are planning on adding an fp16 branch soon. Combined with the lower memory loading above, loading could be done on 12.1GB of RAM. ## Generation example ``` model.eval() input_sentence = "Wo hast du unsere Sprache gelernt?" input_ids = tokenizer.encode(input_sentence, return_tensors='pt') beam_outputs = model.generate( input_ids, max_length=100, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1 ) print(tokenizer.decode(beam_outputs[0], skip_special_tokens=True)) ``` ## Contact us For any custom development please contact us at hello@cedille.ai. ## Links * [Official website](https://en.cedille.ai/) * [Blog](https://en.cedille.ai/blog) * [GitHub](https://github.com/coteries/cedille-ai) * [Twitter](https://twitter.com/CedilleAI)