--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: wav2vec2-bert-mas-ex results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: mn split: test args: mn metrics: - name: Wer type: wer value: 0.6300848379377855 --- # wav2vec2-bert-mas-ex This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7763 - Wer: 0.6301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.424 | 0.12 | 300 | 1.3270 | 0.8863 | | 1.2288 | 0.23 | 600 | 1.1525 | 0.8299 | | 1.0443 | 0.35 | 900 | 0.9812 | 0.7729 | | 1.0082 | 0.46 | 1200 | 0.9045 | 0.6852 | | 0.8698 | 0.58 | 1500 | 0.9797 | 0.7063 | | 0.8649 | 0.69 | 1800 | 0.9071 | 0.6724 | | 0.8268 | 0.81 | 2100 | 0.8387 | 0.6716 | | 0.8428 | 0.93 | 2400 | 0.8392 | 0.6623 | | 0.6933 | 1.04 | 2700 | 0.7124 | 0.5966 | | 0.6618 | 1.16 | 3000 | 0.7056 | 0.5688 | | 0.6578 | 1.27 | 3300 | 0.7003 | 0.5708 | | 0.6331 | 1.39 | 3600 | 0.6798 | 0.5578 | | 0.5873 | 1.5 | 3900 | 0.6993 | 0.5453 | | 0.6076 | 1.62 | 4200 | 0.6562 | 0.5268 | | 0.5359 | 1.74 | 4500 | 0.6837 | 0.5735 | | 0.6807 | 1.85 | 4800 | 0.6495 | 0.5272 | | 0.5945 | 1.97 | 5100 | 0.6434 | 0.5058 | | 0.5059 | 2.08 | 5400 | 0.6237 | 0.4855 | | 0.5244 | 2.2 | 5700 | 0.6334 | 0.4749 | | 0.5052 | 2.31 | 6000 | 0.6831 | 0.4976 | | 0.5249 | 2.43 | 6300 | 0.6339 | 0.4919 | | 0.5537 | 2.55 | 6600 | 0.6541 | 0.4990 | | 0.6387 | 2.66 | 6900 | 0.8375 | 0.5829 | | 0.669 | 2.78 | 7200 | 0.9152 | 0.6289 | | 0.8881 | 2.89 | 7500 | 0.7704 | 0.6191 | | 1.184 | 3.01 | 7800 | 0.8139 | 0.6866 | | 1.0933 | 3.12 | 8100 | 0.7721 | 0.6518 | | 1.3588 | 3.24 | 8400 | 0.7368 | 0.6152 | | 1.4604 | 3.36 | 8700 | 0.7376 | 0.6158 | | 1.2902 | 3.47 | 9000 | 0.7451 | 0.6188 | | 1.3137 | 3.59 | 9300 | 0.7493 | 0.6194 | | 1.3009 | 3.7 | 9600 | 0.7454 | 0.6164 | | 1.3757 | 3.82 | 9900 | 0.7515 | 0.6289 | | 1.2412 | 3.93 | 10200 | 0.7629 | 0.6237 | | 1.2835 | 4.05 | 10500 | 0.7760 | 0.6351 | | 1.3803 | 4.17 | 10800 | 0.7718 | 0.6273 | | 1.325 | 4.28 | 11100 | 0.7763 | 0.6301 | | 1.3798 | 4.4 | 11400 | 0.7763 | 0.6301 | | 1.3421 | 4.51 | 11700 | 0.7763 | 0.6301 | | 1.2834 | 4.63 | 12000 | 0.7763 | 0.6301 | | 1.4757 | 4.74 | 12300 | 0.7763 | 0.6301 | | 1.4171 | 4.86 | 12600 | 0.7763 | 0.6301 | | 1.2838 | 4.97 | 12900 | 0.7763 | 0.6301 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.2