--- license: llama2 base_model: codellama/CodeLlama-7b-hf tags: - generated_from_trainer model-index: - name: fine_tuning_codellama results: [] library_name: peft --- [Visualize in Weights & Biases](https://wandb.ai/chebbichafik133/sql-convert/runs/3q5mg1tl) # fine_tuning_codellama This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: True - _load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 - bnb_4bit_quant_storage: uint8 - load_in_4bit: False - load_in_8bit: True ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1085 | 0.1010 | 20 | 1.0942 | | 0.729 | 0.2020 | 40 | 0.5856 | | 0.4941 | 0.3030 | 60 | 0.3775 | | 0.2508 | 0.4040 | 80 | 0.2868 | | 0.2139 | 0.5051 | 100 | 0.2528 | | 0.2612 | 0.6061 | 120 | 0.2115 | | 0.154 | 0.7071 | 140 | 0.2073 | | 0.2558 | 0.8081 | 160 | 0.1936 | | 0.1553 | 0.9091 | 180 | 0.1832 | | 0.1831 | 1.0101 | 200 | 0.1872 | | 0.2135 | 1.1111 | 220 | 0.1729 | | 0.1278 | 1.2121 | 240 | 0.1724 | | 0.21 | 1.3131 | 260 | 0.1676 | | 0.1328 | 1.4141 | 280 | 0.1619 | | 0.1731 | 1.5152 | 300 | 0.1651 | | 0.1668 | 1.6162 | 320 | 0.1577 | | 0.1259 | 1.7172 | 340 | 0.1565 | | 0.191 | 1.8182 | 360 | 0.1543 | | 0.129 | 1.9192 | 380 | 0.1515 | | 0.1693 | 2.0202 | 400 | 0.1513 | ### Framework versions - PEFT 0.6.0.dev0 - Transformers 4.42.0.dev0 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1