File size: 20,322 Bytes
8520a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
"""
Discrete multinomial diffusion code adapted from https://github.com/RF5/transfusion-asr,
which in turn is adapted from https://github.com/ehoogeboom/multinomial_diffusion.

Please see the original repo (https://github.com/ehoogeboom/multinomial_diffusion) and paper for full
details on how multinomial diffusion works -- thanks to the original authors!
"""

import torch
from torch import Tensor
from torch.functional import F
import numpy as np
from dataclasses import dataclass
from typing import Union

# -------------- Multinomial utility functions -----------

MIN_LOG_ARG = 1e-7 # originally was 1e-40

def log_1_min_a(a): return torch.log((1 - a.exp()).clamp_(min=1e-30))

def log_add_exp(a, b):
    maximum = torch.max(a, b)
    return maximum + torch.log(torch.exp(a - maximum) + torch.exp(b - maximum))

def extract(a: Tensor, t, x_shape):
    """ Given 1D vector of alpha/alpha_cum/betas, get index at `t` of shape (bs,), and then
    broadcast it to number of dims in `x_shape`. 
    """
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))

def index_to_log_onehot(x, num_classes, dim=-1, dtype=torch.float32):
    """ Convert indices `x` (bs, ...) to approx one-hot log-probs of shape (bs, ..., num_classes) """
    assert x.max().item() < num_classes, \
        f'Error: {x.max().item()} >= {num_classes}'
    x_onehot = F.one_hot(x, num_classes)
    if dim == 1:
        permute_order = (0, -1) + tuple(range(1, len(x.size())))
        x_onehot = x_onehot.permute(permute_order)
    else: 
        pass

    log_x = torch.log(x_onehot.to(dtype).clamp(min=MIN_LOG_ARG)) # so min(log_x) will be -30

    return log_x

def sum_except_batch(x: Tensor, num_dims=1) -> Tensor:
    '''
    Sums all dimensions except the first.
    Args:
        x: Tensor, shape (batch_size, ...)
        num_dims: int, number of batch dims (default=1)
    Returns:
        x_sum: Tensor, shape (batch_size,)
    '''
    return x.reshape(*x.shape[:num_dims], -1).sum(-1)

# -------------- Multinomial diffusion class -------------

class MultinomialDiffusion():
    def __init__(self, num_classes, timesteps=100, diffusion_s=0.008,
                 loss_type='vb_stochastic', parametrization='x0', 
                 dtype=torch.float32,
                 device='cpu'):
        super(MultinomialDiffusion, self).__init__()
        assert loss_type in ('vb_stochastic',)
        assert parametrization in ('x0', 'direct')

        self.num_classes = num_classes
        self.loss_type = loss_type
        self.num_timesteps = timesteps
        self.parametrization = parametrization

        alphas = self.cosine_beta_schedule(timesteps, diffusion_s)

        alphas = alphas.to(torch.float64)
        log_alpha = alphas.log()
        log_cumprod_alpha = torch.cumsum(log_alpha, dim=-1)

        log_1_min_alpha = log_1_min_a(log_alpha) # = log(betas)

        log_1_min_cumprod_alpha = log_1_min_a(log_cumprod_alpha) # = log(1- \bar{a}) 
        a = log_add_exp(log_alpha, log_1_min_alpha) # log(1-beta + beta) = log(1) = 0

        assert log_add_exp(log_alpha, log_1_min_alpha).abs().sum().item() < 1.e-5
        assert log_add_exp(log_cumprod_alpha, log_1_min_cumprod_alpha).abs().sum().item() < 1e-5
        assert (torch.cumsum(log_alpha, dim=-1) - log_cumprod_alpha).abs().sum().item() < 1.e-5

        # Convert to float32 and register buffers.
        self.log_alpha = log_alpha.to(dtype).to(device)
        self.log_1_min_alpha = log_1_min_alpha.to(dtype).to(device)
        self.log_cumprod_alpha = log_cumprod_alpha.to(dtype).to(device)
        self.log_1_min_cumprod_alpha = log_1_min_cumprod_alpha.to(dtype).to(device)

    @staticmethod
    def cosine_beta_schedule(timesteps, s=0.008) -> Tensor:
        """
        cosine schedule as proposed in https://arxiv.org/abs/2102.09672 .
        Returns alpha parameters, NOT Beta
        """
        steps = timesteps + 1
        x = torch.linspace(0, timesteps, steps)
        alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
        alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
        alphas = (alphas_cumprod[1:] / alphas_cumprod[:-1])
        alphas = torch.clamp(alphas, 0.001, 1.0)
        return torch.sqrt(alphas)

    def multinomial_kl(self, log_prob1: Tensor, log_prob2: Tensor, dim=-1) -> Tensor:
        """ Get KL divergence between two categorical distributions specified with `log_prob1` and `log_prob2`.
        Assumed probability dim is `dim` (i.e. log_prob1.exp().sum(dim=`dim`) should be tensor of ones)
        """
        kl = (log_prob1.exp() * (log_prob1 - log_prob2)).sum(dim=dim)
        return kl

    def q_pred_one_timestep(self, log_x_t: Tensor, t: Tensor) -> Tensor:
        """ Compute q(x_t | x_{t-1}) = C(x_t | alpha_t * x_{t-1} + (1-alpha_t)/K in the log-domain
        given `log_x_t` as log one-hot encoding of x_t. 
        
        Recall due to symmetry property we can compute
        this value using x_t instead of x_{t-1} (se appendix A of https://arxiv.org/pdf/2102.05379.pdf)
        """
        dt = log_x_t.dtype
        log_alpha_t = extract(self.log_alpha, t, log_x_t.shape).to(dt)
        log_1_min_alpha_t = extract(self.log_1_min_alpha, t, log_x_t.shape).to(dt)

        # alpha_t * E[xt] + (1 - alpha_t) 1 / K
        log_probs = log_add_exp(
            log_x_t + log_alpha_t,
            log_1_min_alpha_t - np.log(self.num_classes)
        )
        return log_probs

    def q_pred_one_timestep_scaled(self, log_x_t: Tensor, t: Tensor, c: int, jump_len: int) -> Tensor:
        """ Compute q(x_t | x_{t-1}) = C(x_t | alpha_t * x_{t-1} + (1-alpha_t)/K in the log-domain
        given `log_x_t` as log one-hot encoding of x_t. 
        
        Recall due to symmetry property we can compute
        this value using x_t instead of x_{t-1} (se appendix A of https://arxiv.org/pdf/2102.05379.pdf)
        """
        dt = log_x_t.dtype
        log_alpha_t = extract(self.log_alpha, t, log_x_t.shape).to(dt)
        log_1_min_alpha_t = extract(self.log_1_min_alpha, t, log_x_t.shape).to(dt)

        # Magic
        xax = torch.arange(0,log_x_t.shape[1],1).to(log_x_t.device)
        aa=log_x_t.shape[1]*(c/jump_len)
        sig = 1/(1+torch.exp(-(xax-aa+20)/8))
        log_alpha_t = (torch.log(1/sig)[None,:,None] + log_alpha_t).clamp(-torch.inf, 0)
        log_1_min_alpha_t = torch.log(sig)[None,:,None] + log_1_min_alpha_t

        # alpha_t * E[xt] + (1 - alpha_t) 1 / K
        log_probs = log_add_exp(
            log_x_t + log_alpha_t,
            log_1_min_alpha_t - np.log(self.num_classes)
        )
        return log_probs

    def q_pred(self, log_x_start: Tensor, t) -> Tensor:
        """ Compute q(x_t | x_0) = C(x_t | bar{alpha}_t * x_0 + (1 - bar{alpha}_t)/K ) in log domain,
        given `log_x_start` of log probs of x_0.
        """
        dt = log_x_start.dtype
        log_cumprod_alpha_t = extract(self.log_cumprod_alpha, t, log_x_start.shape).to(dt)
        log_1_min_cumprod_alpha = extract(self.log_1_min_cumprod_alpha, t, log_x_start.shape).to(dt)
        
        log_probs = log_add_exp(
            log_x_start + log_cumprod_alpha_t,
            log_1_min_cumprod_alpha - np.log(self.num_classes)
        )
        
        return log_probs

    def q_posterior(self, log_x_start, log_x_t, t):
        """ Compute  `q(xt-1 | xt, x0) = q(xt | xt-1, x0) * q(xt-1 | x0) / q(xt | x0)`
        where q(xt | xt-1, x0) = q(xt | xt-1).
        """
        # q(xt-1 | xt, x0) = q(xt | xt-1, x0) * q(xt-1 | x0) / q(xt | x0)
        # where q(xt | xt-1, x0) = q(xt | xt-1).

        t_minus_1 = t - 1
        # Remove negative values, will not be used anyway for final decoder
        t_minus_1 = torch.where(t_minus_1 < 0, torch.zeros_like(t_minus_1), t_minus_1)
        log_EV_qxtmin_x0 = self.q_pred(log_x_start, t_minus_1) # log( q(x_{t-1} | x_0) )
        # if t == 0, then log( q(x_0 | x_0) ) = log( one_hot(x_0) ), not even random at that point.
        # so, where t == 0 
        num_axes = (1,) * (len(log_x_start.size()) - 1) 
        t_broadcast = t.view(-1, *num_axes) * torch.ones_like(log_x_start) # broadcast to non-batch axes
        log_EV_qxtmin_x0 = torch.where(t_broadcast == 0, log_x_start, log_EV_qxtmin_x0) 
        # where it is zero, replace
        # with log one-hot encoding of x0.

        # Note: _NOT_ x_tmin1, which is how the formula is typically used!!!
        # Not very easy to see why this is true. But it is :)
        # log_EV_qxtmin_x0 ~ q(x_{t-1} | x_0) 
        # q_pred_one_timestep(log_x_t, t) ~ q(x_t | x_{t-1}) (which due to symmetry can be computed using x_t)
        unnormed_logprobs = log_EV_qxtmin_x0 + self.q_pred_one_timestep(log_x_t, t) # numerator of bayes
        
        # approximate denominator with just a normalizing sum.
        log_EV_xtmin_given_xt_given_xstart = \
            unnormed_logprobs \
            - torch.logsumexp(unnormed_logprobs, dim=-1, keepdim=True)
        
        return log_EV_xtmin_given_xt_given_xstart

    def p_pred(self, log_x_t, t, log_x0_pred):
        """ Predict `p(x_{t-1} | x_t)` using `q(xt-1 | xt, hat{x0})`, where `hat{x0}` is given by
        log probabilities from model as `log_x0_pred` (bs, ...., K) and x_t is given by
        `log_x_t` of shape `(bs, ..., K)`
        """
        # log_x_recon = self.predict_start(log_x, t=t) # model itself predicts x_0
        # log_x0_pred
        log_model_pred = self.q_posterior(
            log_x_start=log_x0_pred, log_x_t=log_x_t, t=t)
        return log_model_pred

    def log_sample_categorical(self, logprobs: Tensor, dim=-1) -> Tensor:
        """ Sample from categorical `logprobs` (bs, ..., probs), where position of probs is specified
        by `dim`.

        Returns sampled long indices of shape `(bs, ...)`
        """
        uniform = torch.rand_like(logprobs)
        gumbel_noise = -torch.log( (-torch.log(uniform.clamp_(min=MIN_LOG_ARG)) ).clamp_(min=MIN_LOG_ARG))
        sample = (gumbel_noise + logprobs).argmax(dim=dim)
        return sample

    def q_sample(self, log_x_start, t):
        """ Draw `x_t` ~ q(x_t | x_0) . `log_x_start` is of shape `(bs, ..., K)`, returns result of same shape """
        log_EV_qxt_x0 = self.q_pred(log_x_start, t)
        sample = self.log_sample_categorical(log_EV_qxt_x0)
        # log_sample = index_to_log_onehot(sample, self.num_classes)

        return sample #log_sample

    def compute_Lt(self, log_x_start: Tensor, log_x_t: Tensor, log_x0_pred: Tensor, t, 
                   detach_mean=False, include_kl_prior=True):
        """ Get loss given one-hot log x_0, one-hot log x_t, t, and model prediction `log_x0_pred`.
        Parameters:
            - `log_x_start`: ground-truth input x0, converted to log one-hot (bs, ..., K)
            - `log_x_t`: sampled noisy input at `x_t`, converted to log one-hot (bs, ..., K)
            - `t`: diffusion timestep (bs,)
            - `log_x0_pred`: model prediction of log probabilities of x0, i.e. hat{x0}.
            - `include_kl_prior`: add last two terms to model loss (does not change optimization problem).
        """
        dtype = log_x_start.dtype
        log_true_prob = self.q_posterior(
            log_x_start=log_x_start, log_x_t=log_x_t, t=t)

        log_model_prob = self.p_pred(log_x_t=log_x_t, t=t, log_x0_pred=log_x0_pred)

        if detach_mean:
            log_model_prob = log_model_prob.detach()

        kl = self.multinomial_kl(log_true_prob, log_model_prob)
        kl = sum_except_batch(kl)

        # Add L_0, -log(p(x_0 | x_1))
        decoder_nll = - (log_x_start.exp() * log_model_prob).sum(dim=-1)
        decoder_nll = sum_except_batch(decoder_nll)

        mask = (t == torch.zeros_like(t)).to(dtype)
        loss = mask * decoder_nll + (1. - mask) * kl # only add L0 if t == 0.

        if include_kl_prior:
            pt = torch.ones_like(t, dtype=dtype)
            kl_prior = self.kl_prior(log_x_start)
            loss = (kl) + kl_prior

        return loss

    def kl_prior(self, log_x_start: Tensor) -> Tensor:
        """ This function computes -H_{q}(x_T | x_0)+H_{p}(x_T), which 
        by some math (see wiki for KL div relation to conditional entropy).
        So KL(q(x_T | x_0) || 1/K) = -H_{q}(x_T | x_0)+H_{p}(x_T) for categorical distribution.

        Given `log_x_start` (bs, ..., probs), return KL prior of shape (bs,)
        """
        b = log_x_start.size(0)
        device = log_x_start.device
        ones = torch.ones(b, device=device, dtype=torch.long)

        log_qxT_prob = self.q_pred(log_x_start, t=(self.num_timesteps - 1) * ones) # q(x_T | x_0)
        log_half_prob = -torch.log(self.num_classes * torch.ones_like(log_qxT_prob)) # log(1/K), broadcast to q(x_T|x_0) shape

        kl_prior = self.multinomial_kl(log_qxT_prob, log_half_prob)
        return sum_except_batch(kl_prior)


def index2logit(x: Tensor, vocab_size: int, dtype=torch.float32):
    x = F.one_hot(x, num_classes=vocab_size).to(dtype)
    x = x * (vocab_size/(vocab_size - 1)) - 1/(vocab_size - 1)
    return x


# ------------------------------
# Functions adapted from the full


@dataclass
class DSH():
    # Diffusion Sampling Hyperparameters [DSH] (Section 4)
    jump_len: int = 1 # j in RePaint paper [default 10] (Section 4.1)
    jump_n_sample: int = 1 # r in RePaint paper [default 10] (Section 4.1)
    last_greedy: bool = False # whether to not sample at t=0, but take argmax prediction. [default False]
    x_0_temp: float = 1.0 # reweight temp for model prediction of x0
    guidance_w: float = 1.0 # classifier free guidance weight [default 1.5] (Section 4.3)
    enable_kevin_scaled_inference: bool = True # sequentially progressive diffusion [default True] (Section 4.2)
    T_override: Union[None, int] = None # allow variable transcription sizes during inference (Section 4.4)

    deep_clone: bool = False # whether to do deep clone. 
    q0_override_steps: int = 0 # number of steps that we allow overriding the input quant level 0 inputs.
    progress: bool = False # whether to show progress bar


def get_schedule(t_T, jump_len=10, jump_n_sample=10):
    jumps = {}
    for j in range(0, t_T - jump_len, jump_len):
        jumps[j] = jump_n_sample - 1
    t = t_T
    ts = []
    while t >= 1:
        t = t-1
        ts.append(t)
        if jumps.get(t, 0) > 0:
            jumps[t] = jumps[t] - 1
            for _ in range(jump_len):
                t = t + 1
                ts.append(t)
    ts.append(-1)
    return ts


def forward_diffusion(diff: MultinomialDiffusion, dtype, x, t, c=None, dsh=DSH):
    """Simple forward diffusion process p"""
    log_x_t = index_to_log_onehot(x, diff.num_classes, dtype=dtype)
    if c is not None: x = diff.q_pred_one_timestep_scaled(log_x_t, t, c, dsh.jump_len)
    else: x = diff.q_pred_one_timestep(log_x_t, t)
    x = diff.log_sample_categorical(x)
    return x


def reverse_diffusion(diff: MultinomialDiffusion, model, batch, x_known=None, m=None, 
                      last_greedy=False, temperature=1.0, alphas=None, ensemble_size=1, dsh=DSH):
    """Reverse diffusion process q: predict x_{t-1} given x, t, x_known, m. Optionally do not sample model output
    for t=0, but rather use the greedy argmax with `last_greedy`.
    """
    x = batch[4]
    t = batch[-1]
    if x_known is None: x_known = torch.zeros_like(x)
    if m is None: m = torch.zeros_like(x)

    # Equation 8b
    # for b in batch:
        # print(f"{b.shape}: {b}")
    x_0_pred = model(*batch) # (bs, seq_len, logit_dim, n_quant)
    x_0_pred = x_0_pred.permute(0, 1, 3, 2) # (bs, seq_len, n_quant, dim)

    if dsh.guidance_w != 1:
        uncond_x_0_pred = model(*(c.clone() if c is not None else None for c in batch), drop_cond=True)
        uncond_x_0_pred = uncond_x_0_pred.permute(0, 1, 3, 2)
        x_0_pred = dsh.guidance_w*x_0_pred + (1-dsh.guidance_w)*uncond_x_0_pred

    x_0_pred = x_0_pred / temperature
    log_x_0_pred = F.log_softmax(x_0_pred, dim=-1)
    log_x_t = index_to_log_onehot(x, diff.num_classes, dtype=x_0_pred.dtype)

    # print("PRE: ", log_x_t.shape, t.shape, log_x_0_pred.shape)
    log_model_pred = diff.p_pred(log_x_t, t, log_x_0_pred) # p(x_{t-1} | x_{t})
    
    a_t = alphas[t[0]] if alphas is not None else 0
    mat = torch.eye(ensemble_size, device=x.device)*(1-a_t)
    mat += 1/ensemble_size * a_t
    mat = torch.block_diag(*([mat]*(x.shape[0]//ensemble_size)))
    log_model_pred = ( (mat[..., None, None] ).log().to(x.dtype) + log_model_pred[None])
    log_model_pred = torch.logsumexp(log_model_pred, dim=1)
    
    if (t==0).all() and last_greedy: # Do not sample at t=0
        x_tm1_unknown = log_model_pred.argmax(dim=-1)
    else:
        x_tm1_unknown = diff.log_sample_categorical(log_model_pred)
    
    # Equation 8a
    x_known_log = index_to_log_onehot(x_known, diff.num_classes, dtype=x_0_pred.dtype)
    if (t==0).all(): # Do not sample at t=0
        x_tm1_known = x_known
    else:
        x_tm1_known = diff.q_sample(x_known_log, t)
    
    # Equation 8c
    x_tm1 = x_tm1_known * m.long() + x_tm1_unknown * (1 - m.long())
    return x_tm1, x_0_pred



@torch.inference_mode()
def perform_simple_inference(model: torch.nn.Module, batch: tuple, diff: MultinomialDiffusion, T, dtype=torch.float16,
                             retain_quant0: bool = True, dsh=DSH):
    """ If `retain_quant0`, then do not sample quant0 in each forward or reverse diffusion step. """

    # (bs=1, N), (bs, seq_len2, 8), (bs,)
    c_text, c_codes, c_text_lengths, c_codes_lengths, x, x_padding_mask = batch
        
    device = c_text.device
    bs = c_text.shape[0]
    x_quant0 = x[..., 0].clone() # (bs, seq_len) 0th quant level
    x = torch.randint(0, diff.num_classes, x.shape, dtype=x.dtype, device=device)
    # CRITICAL LINE: override quantization level 0 with provided quant0 level.
    x[..., 0] = x_quant0 

    # RePaint paper resample scheduling
    times = get_schedule(T, jump_n_sample=dsh.jump_n_sample, jump_len=dsh.jump_len)

    x_known = torch.zeros_like(x)
    x_known[..., 0] = x[..., 0] # override L0 codes
    m = torch.zeros_like(x).bool()
    # (bs, seq_len, 8)
    m[..., 0] = True

    offset = 0
    if dsh.deep_clone:
        print(f"Note: using deep clone. Assuming input `c_phones` is concatenated prompt and output phones.",
              "Also assuming no padded indices in `c_codes`.")
        prompt = c_codes
        x = torch.cat((prompt, x), dim=1) # (bs=1, sl1 + sl2, 8)
        x_known = torch.cat((prompt, x_known), dim=1)
        x_padding_mask = torch.cat((
            torch.zeros(x_padding_mask.shape[0], c_codes_lengths[0], dtype=torch.bool, device=x_padding_mask.device), 
            x_padding_mask), dim=-1
        )
        # (bs=1, :up to prompt duration, all 8 codebooks) = True/masked.
        m = torch.cat((torch.ones_like(prompt), m), dim=1)
        x_quant0 = torch.cat((prompt[..., 0], x_quant0), dim=-1)
        offset = c_codes_lengths[0]

        print(f"New x: {x.shape} | new x_known: {x_known.shape} . Base prompt: {prompt.shape}. New padding mask: {x_padding_mask.shape} | m shape: {m.shape}")

    c = 0 # sequentially progressive diffusion offset (Section 4.2)

    # ensemble bs (not in paper)
    alphas = torch.linspace(1, 0, T).to(device)

    pb = zip(times[:-1], times[1:])
    if dsh.progress:
        from fastprogress import progress_bar
        pb = progress_bar(pb, total=len(times)-1)

    # See RePaint paper algorithm
    for t_last, t_cur in pb:

        t = torch.ones((bs,), dtype=torch.long, device=x.device) * (t_last)
        if t_cur < t_last:
            if c > dsh.jump_n_sample:
                c = 0
            c += 1/dsh.jump_len

            # Reverse diffusion: q
            cbatch = (c_text, c_codes, c_text_lengths, c_codes_lengths, x, x_padding_mask, t) 
            x, x_0_pred = reverse_diffusion(diff, model, cbatch, x_known, m, temperature=dsh.x_0_temp, alphas=alphas, ensemble_size=1, dsh=dsh)
        else:
            # Forward diffusion: p
            if dsh.enable_kevin_scaled_inference: x = forward_diffusion(diff, dtype, x, t, c=c, dsh=dsh)
            else: x = forward_diffusion(diff, dtype, x, t, c=None, dsh=dsh)

        if retain_quant0 and dsh.q0_override_steps < t_last:
            x[..., 0] = x_quant0

    # crop offset:
    x = x[:, offset:]
    return x