update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: spellcorrector_710_v8
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# spellcorrector_710_v8
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0144
|
23 |
+
- Precision: 0.9961
|
24 |
+
- Recall: 0.9962
|
25 |
+
- F1: 0.9962
|
26 |
+
- Accuracy: 0.9957
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 4
|
47 |
+
- eval_batch_size: 4
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 25
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.2237 | 1.0 | 1951 | 0.1844 | 0.9061 | 0.9700 | 0.9370 | 0.9557 |
|
58 |
+
| 0.1882 | 2.0 | 3902 | 0.1577 | 0.9144 | 0.9719 | 0.9423 | 0.9598 |
|
59 |
+
| 0.1669 | 3.0 | 5853 | 0.1389 | 0.9311 | 0.9689 | 0.9497 | 0.9633 |
|
60 |
+
| 0.154 | 4.0 | 7804 | 0.1234 | 0.9343 | 0.9751 | 0.9543 | 0.9669 |
|
61 |
+
| 0.141 | 5.0 | 9755 | 0.1076 | 0.9480 | 0.9734 | 0.9605 | 0.9711 |
|
62 |
+
| 0.1286 | 6.0 | 11706 | 0.0959 | 0.9584 | 0.9746 | 0.9664 | 0.9747 |
|
63 |
+
| 0.1131 | 7.0 | 13657 | 0.0799 | 0.9624 | 0.9792 | 0.9708 | 0.9780 |
|
64 |
+
| 0.1016 | 8.0 | 15608 | 0.0714 | 0.9696 | 0.9801 | 0.9748 | 0.9805 |
|
65 |
+
| 0.0915 | 9.0 | 17559 | 0.0627 | 0.9737 | 0.9821 | 0.9779 | 0.9825 |
|
66 |
+
| 0.0839 | 10.0 | 19510 | 0.0574 | 0.9781 | 0.9830 | 0.9806 | 0.9839 |
|
67 |
+
| 0.0761 | 11.0 | 21461 | 0.0500 | 0.9808 | 0.9849 | 0.9828 | 0.9858 |
|
68 |
+
| 0.069 | 12.0 | 23412 | 0.0437 | 0.9807 | 0.9887 | 0.9847 | 0.9873 |
|
69 |
+
| 0.0644 | 13.0 | 25363 | 0.0404 | 0.9849 | 0.9882 | 0.9866 | 0.9882 |
|
70 |
+
| 0.057 | 14.0 | 27314 | 0.0371 | 0.9871 | 0.9892 | 0.9881 | 0.9892 |
|
71 |
+
| 0.0555 | 15.0 | 29265 | 0.0343 | 0.9890 | 0.9895 | 0.9893 | 0.9900 |
|
72 |
+
| 0.0512 | 16.0 | 31216 | 0.0288 | 0.9899 | 0.9919 | 0.9909 | 0.9914 |
|
73 |
+
| 0.0464 | 17.0 | 33167 | 0.0265 | 0.9914 | 0.9922 | 0.9918 | 0.9920 |
|
74 |
+
| 0.0424 | 18.0 | 35118 | 0.0234 | 0.9924 | 0.9937 | 0.9931 | 0.9929 |
|
75 |
+
| 0.0391 | 19.0 | 37069 | 0.0215 | 0.9940 | 0.9936 | 0.9938 | 0.9936 |
|
76 |
+
| 0.0375 | 20.0 | 39020 | 0.0195 | 0.9944 | 0.9944 | 0.9944 | 0.9942 |
|
77 |
+
| 0.0344 | 21.0 | 40971 | 0.0178 | 0.9952 | 0.9949 | 0.9950 | 0.9947 |
|
78 |
+
| 0.032 | 22.0 | 42922 | 0.0160 | 0.9955 | 0.9957 | 0.9956 | 0.9952 |
|
79 |
+
| 0.0299 | 23.0 | 44873 | 0.0153 | 0.9957 | 0.9960 | 0.9958 | 0.9954 |
|
80 |
+
| 0.0291 | 24.0 | 46824 | 0.0145 | 0.9961 | 0.9961 | 0.9961 | 0.9957 |
|
81 |
+
| 0.0289 | 25.0 | 48775 | 0.0144 | 0.9961 | 0.9962 | 0.9962 | 0.9957 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.28.0
|
87 |
+
- Pytorch 2.0.1+cu118
|
88 |
+
- Datasets 2.14.5
|
89 |
+
- Tokenizers 0.13.3
|