Buseak commited on
Commit
64b83a8
1 Parent(s): db2ffaa

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: spellcorrector_710_v8
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # spellcorrector_710_v8
19
+
20
+ This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0144
23
+ - Precision: 0.9961
24
+ - Recall: 0.9962
25
+ - F1: 0.9962
26
+ - Accuracy: 0.9957
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 4
47
+ - eval_batch_size: 4
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 25
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.2237 | 1.0 | 1951 | 0.1844 | 0.9061 | 0.9700 | 0.9370 | 0.9557 |
58
+ | 0.1882 | 2.0 | 3902 | 0.1577 | 0.9144 | 0.9719 | 0.9423 | 0.9598 |
59
+ | 0.1669 | 3.0 | 5853 | 0.1389 | 0.9311 | 0.9689 | 0.9497 | 0.9633 |
60
+ | 0.154 | 4.0 | 7804 | 0.1234 | 0.9343 | 0.9751 | 0.9543 | 0.9669 |
61
+ | 0.141 | 5.0 | 9755 | 0.1076 | 0.9480 | 0.9734 | 0.9605 | 0.9711 |
62
+ | 0.1286 | 6.0 | 11706 | 0.0959 | 0.9584 | 0.9746 | 0.9664 | 0.9747 |
63
+ | 0.1131 | 7.0 | 13657 | 0.0799 | 0.9624 | 0.9792 | 0.9708 | 0.9780 |
64
+ | 0.1016 | 8.0 | 15608 | 0.0714 | 0.9696 | 0.9801 | 0.9748 | 0.9805 |
65
+ | 0.0915 | 9.0 | 17559 | 0.0627 | 0.9737 | 0.9821 | 0.9779 | 0.9825 |
66
+ | 0.0839 | 10.0 | 19510 | 0.0574 | 0.9781 | 0.9830 | 0.9806 | 0.9839 |
67
+ | 0.0761 | 11.0 | 21461 | 0.0500 | 0.9808 | 0.9849 | 0.9828 | 0.9858 |
68
+ | 0.069 | 12.0 | 23412 | 0.0437 | 0.9807 | 0.9887 | 0.9847 | 0.9873 |
69
+ | 0.0644 | 13.0 | 25363 | 0.0404 | 0.9849 | 0.9882 | 0.9866 | 0.9882 |
70
+ | 0.057 | 14.0 | 27314 | 0.0371 | 0.9871 | 0.9892 | 0.9881 | 0.9892 |
71
+ | 0.0555 | 15.0 | 29265 | 0.0343 | 0.9890 | 0.9895 | 0.9893 | 0.9900 |
72
+ | 0.0512 | 16.0 | 31216 | 0.0288 | 0.9899 | 0.9919 | 0.9909 | 0.9914 |
73
+ | 0.0464 | 17.0 | 33167 | 0.0265 | 0.9914 | 0.9922 | 0.9918 | 0.9920 |
74
+ | 0.0424 | 18.0 | 35118 | 0.0234 | 0.9924 | 0.9937 | 0.9931 | 0.9929 |
75
+ | 0.0391 | 19.0 | 37069 | 0.0215 | 0.9940 | 0.9936 | 0.9938 | 0.9936 |
76
+ | 0.0375 | 20.0 | 39020 | 0.0195 | 0.9944 | 0.9944 | 0.9944 | 0.9942 |
77
+ | 0.0344 | 21.0 | 40971 | 0.0178 | 0.9952 | 0.9949 | 0.9950 | 0.9947 |
78
+ | 0.032 | 22.0 | 42922 | 0.0160 | 0.9955 | 0.9957 | 0.9956 | 0.9952 |
79
+ | 0.0299 | 23.0 | 44873 | 0.0153 | 0.9957 | 0.9960 | 0.9958 | 0.9954 |
80
+ | 0.0291 | 24.0 | 46824 | 0.0145 | 0.9961 | 0.9961 | 0.9961 | 0.9957 |
81
+ | 0.0289 | 25.0 | 48775 | 0.0144 | 0.9961 | 0.9962 | 0.9962 | 0.9957 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.28.0
87
+ - Pytorch 2.0.1+cu118
88
+ - Datasets 2.14.5
89
+ - Tokenizers 0.13.3