update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: spellcorrector_3110_v17
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# spellcorrector_3110_v17
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0086
|
23 |
+
- Precision: 0.9991
|
24 |
+
- Recall: 0.9990
|
25 |
+
- F1: 0.9990
|
26 |
+
- Accuracy: 0.9977
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 4
|
47 |
+
- eval_batch_size: 4
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.1377 | 1.0 | 1949 | 0.1114 | 0.9542 | 0.9820 | 0.9679 | 0.9757 |
|
58 |
+
| 0.1079 | 2.0 | 3898 | 0.0851 | 0.9680 | 0.9801 | 0.9740 | 0.9795 |
|
59 |
+
| 0.0904 | 3.0 | 5847 | 0.0717 | 0.9733 | 0.9842 | 0.9787 | 0.9823 |
|
60 |
+
| 0.0788 | 4.0 | 7796 | 0.0612 | 0.9773 | 0.9859 | 0.9816 | 0.9845 |
|
61 |
+
| 0.0709 | 5.0 | 9745 | 0.0548 | 0.9824 | 0.9843 | 0.9833 | 0.9858 |
|
62 |
+
| 0.0646 | 6.0 | 11694 | 0.0483 | 0.9847 | 0.9890 | 0.9868 | 0.9876 |
|
63 |
+
| 0.0579 | 7.0 | 13643 | 0.0426 | 0.9875 | 0.9889 | 0.9882 | 0.9889 |
|
64 |
+
| 0.0532 | 8.0 | 15592 | 0.0385 | 0.9897 | 0.9889 | 0.9893 | 0.9898 |
|
65 |
+
| 0.0477 | 9.0 | 17541 | 0.0320 | 0.9913 | 0.9932 | 0.9922 | 0.9916 |
|
66 |
+
| 0.044 | 10.0 | 19490 | 0.0268 | 0.9926 | 0.9952 | 0.9939 | 0.9929 |
|
67 |
+
| 0.0401 | 11.0 | 21439 | 0.0232 | 0.9937 | 0.9960 | 0.9949 | 0.9936 |
|
68 |
+
| 0.0366 | 12.0 | 23388 | 0.0200 | 0.9957 | 0.9961 | 0.9959 | 0.9944 |
|
69 |
+
| 0.0317 | 13.0 | 25337 | 0.0172 | 0.9968 | 0.9969 | 0.9968 | 0.9953 |
|
70 |
+
| 0.0294 | 14.0 | 27286 | 0.0146 | 0.9971 | 0.9979 | 0.9975 | 0.9959 |
|
71 |
+
| 0.0269 | 15.0 | 29235 | 0.0126 | 0.9979 | 0.9982 | 0.9981 | 0.9965 |
|
72 |
+
| 0.0248 | 16.0 | 31184 | 0.0119 | 0.9984 | 0.9982 | 0.9983 | 0.9968 |
|
73 |
+
| 0.0228 | 17.0 | 33133 | 0.0098 | 0.9987 | 0.9987 | 0.9987 | 0.9973 |
|
74 |
+
| 0.0203 | 18.0 | 35082 | 0.0091 | 0.9989 | 0.9987 | 0.9988 | 0.9975 |
|
75 |
+
| 0.0189 | 19.0 | 37031 | 0.0087 | 0.9990 | 0.9989 | 0.9990 | 0.9976 |
|
76 |
+
| 0.0198 | 20.0 | 38980 | 0.0086 | 0.9991 | 0.9990 | 0.9990 | 0.9977 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.28.0
|
82 |
+
- Pytorch 2.1.0+cu118
|
83 |
+
- Datasets 2.14.6
|
84 |
+
- Tokenizers 0.13.3
|