Buseak commited on
Commit
d158c42
1 Parent(s): b86d071

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: spellcorrector_3110_v17
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # spellcorrector_3110_v17
19
+
20
+ This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0086
23
+ - Precision: 0.9991
24
+ - Recall: 0.9990
25
+ - F1: 0.9990
26
+ - Accuracy: 0.9977
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 4
47
+ - eval_batch_size: 4
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.1377 | 1.0 | 1949 | 0.1114 | 0.9542 | 0.9820 | 0.9679 | 0.9757 |
58
+ | 0.1079 | 2.0 | 3898 | 0.0851 | 0.9680 | 0.9801 | 0.9740 | 0.9795 |
59
+ | 0.0904 | 3.0 | 5847 | 0.0717 | 0.9733 | 0.9842 | 0.9787 | 0.9823 |
60
+ | 0.0788 | 4.0 | 7796 | 0.0612 | 0.9773 | 0.9859 | 0.9816 | 0.9845 |
61
+ | 0.0709 | 5.0 | 9745 | 0.0548 | 0.9824 | 0.9843 | 0.9833 | 0.9858 |
62
+ | 0.0646 | 6.0 | 11694 | 0.0483 | 0.9847 | 0.9890 | 0.9868 | 0.9876 |
63
+ | 0.0579 | 7.0 | 13643 | 0.0426 | 0.9875 | 0.9889 | 0.9882 | 0.9889 |
64
+ | 0.0532 | 8.0 | 15592 | 0.0385 | 0.9897 | 0.9889 | 0.9893 | 0.9898 |
65
+ | 0.0477 | 9.0 | 17541 | 0.0320 | 0.9913 | 0.9932 | 0.9922 | 0.9916 |
66
+ | 0.044 | 10.0 | 19490 | 0.0268 | 0.9926 | 0.9952 | 0.9939 | 0.9929 |
67
+ | 0.0401 | 11.0 | 21439 | 0.0232 | 0.9937 | 0.9960 | 0.9949 | 0.9936 |
68
+ | 0.0366 | 12.0 | 23388 | 0.0200 | 0.9957 | 0.9961 | 0.9959 | 0.9944 |
69
+ | 0.0317 | 13.0 | 25337 | 0.0172 | 0.9968 | 0.9969 | 0.9968 | 0.9953 |
70
+ | 0.0294 | 14.0 | 27286 | 0.0146 | 0.9971 | 0.9979 | 0.9975 | 0.9959 |
71
+ | 0.0269 | 15.0 | 29235 | 0.0126 | 0.9979 | 0.9982 | 0.9981 | 0.9965 |
72
+ | 0.0248 | 16.0 | 31184 | 0.0119 | 0.9984 | 0.9982 | 0.9983 | 0.9968 |
73
+ | 0.0228 | 17.0 | 33133 | 0.0098 | 0.9987 | 0.9987 | 0.9987 | 0.9973 |
74
+ | 0.0203 | 18.0 | 35082 | 0.0091 | 0.9989 | 0.9987 | 0.9988 | 0.9975 |
75
+ | 0.0189 | 19.0 | 37031 | 0.0087 | 0.9990 | 0.9989 | 0.9990 | 0.9976 |
76
+ | 0.0198 | 20.0 | 38980 | 0.0086 | 0.9991 | 0.9990 | 0.9990 | 0.9977 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.28.0
82
+ - Pytorch 2.1.0+cu118
83
+ - Datasets 2.14.6
84
+ - Tokenizers 0.13.3