--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: spellcorrector_2410_v14_canine-s results: [] --- # spellcorrector_2410_v14_canine-s This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0043 - Precision: 0.9996 - Recall: 0.9994 - F1: 0.9995 - Accuracy: 0.9989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.19 | 1.0 | 1951 | 0.1535 | 0.9437 | 0.9787 | 0.9609 | 0.9670 | | 0.1486 | 2.0 | 3902 | 0.1187 | 0.9591 | 0.9774 | 0.9682 | 0.9716 | | 0.126 | 3.0 | 5853 | 0.1029 | 0.9671 | 0.9792 | 0.9731 | 0.9739 | | 0.1082 | 4.0 | 7804 | 0.0888 | 0.9740 | 0.9785 | 0.9763 | 0.9769 | | 0.0992 | 5.0 | 9755 | 0.0719 | 0.9762 | 0.9852 | 0.9807 | 0.9813 | | 0.0871 | 6.0 | 11706 | 0.0624 | 0.9805 | 0.9861 | 0.9833 | 0.9832 | | 0.0782 | 7.0 | 13657 | 0.0527 | 0.9835 | 0.9885 | 0.9860 | 0.9858 | | 0.0693 | 8.0 | 15608 | 0.0446 | 0.9866 | 0.9898 | 0.9882 | 0.9876 | | 0.0604 | 9.0 | 17559 | 0.0375 | 0.9888 | 0.9906 | 0.9897 | 0.9893 | | 0.0543 | 10.0 | 19510 | 0.0318 | 0.9915 | 0.9926 | 0.9921 | 0.9914 | | 0.046 | 11.0 | 21461 | 0.0272 | 0.9932 | 0.9940 | 0.9936 | 0.9925 | | 0.0425 | 12.0 | 23412 | 0.0217 | 0.9942 | 0.9950 | 0.9946 | 0.9939 | | 0.0378 | 13.0 | 25363 | 0.0188 | 0.9953 | 0.9963 | 0.9958 | 0.9946 | | 0.0333 | 14.0 | 27314 | 0.0160 | 0.9963 | 0.9962 | 0.9962 | 0.9954 | | 0.0286 | 15.0 | 29265 | 0.0140 | 0.9972 | 0.9970 | 0.9971 | 0.9960 | | 0.0261 | 16.0 | 31216 | 0.0121 | 0.9977 | 0.9978 | 0.9978 | 0.9966 | | 0.0235 | 17.0 | 33167 | 0.0104 | 0.9984 | 0.9979 | 0.9982 | 0.9972 | | 0.021 | 18.0 | 35118 | 0.0090 | 0.9987 | 0.9986 | 0.9986 | 0.9976 | | 0.0196 | 19.0 | 37069 | 0.0073 | 0.9990 | 0.9988 | 0.9989 | 0.9980 | | 0.0166 | 20.0 | 39020 | 0.0064 | 0.9992 | 0.9991 | 0.9991 | 0.9983 | | 0.0158 | 21.0 | 40971 | 0.0059 | 0.9994 | 0.9991 | 0.9992 | 0.9984 | | 0.0136 | 22.0 | 42922 | 0.0053 | 0.9995 | 0.9994 | 0.9994 | 0.9986 | | 0.0134 | 23.0 | 44873 | 0.0047 | 0.9996 | 0.9993 | 0.9994 | 0.9988 | | 0.0125 | 24.0 | 46824 | 0.0045 | 0.9996 | 0.9993 | 0.9995 | 0.9989 | | 0.0116 | 25.0 | 48775 | 0.0043 | 0.9996 | 0.9994 | 0.9995 | 0.9989 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.13.3