--- license: apache-2.0 base_model: Bisher/wav2vec2_ASV_deepfake_audio_detection tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen results: [] --- # wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen This model is a fine-tuned version of [Bisher/wav2vec2_ASV_deepfake_audio_detection](https://huggingface.co/Bisher/wav2vec2_ASV_deepfake_audio_detection) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4076 - Accuracy: 0.9115 - Precision: 0.9131 - Recall: 0.9115 - F1: 0.8803 - Tp: 265 - Tn: 17893 - Fn: 1742 - Fp: 20 - Eer: 0.0588 - Min Tdcf: 0.0271 - Auc Roc: 0.9849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 152 - eval_batch_size: 152 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 608 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Tp | Tn | Fn | Fp | Eer | Min Tdcf | Auc Roc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:---:|:-----:|:----:|:--:|:------:|:--------:|:-------:| | 0.025 | 0.0490 | 10 | 0.3573 | 0.9139 | 0.9168 | 0.9139 | 0.8847 | 308 | 17896 | 1699 | 17 | 0.0826 | 0.0329 | 0.9732 | | 0.0219 | 0.0979 | 20 | 0.3002 | 0.9152 | 0.9172 | 0.9152 | 0.8875 | 339 | 17891 | 1668 | 22 | 0.0757 | 0.0321 | 0.9759 | | 0.0193 | 0.1469 | 30 | 0.3557 | 0.9159 | 0.9178 | 0.9159 | 0.8889 | 354 | 17890 | 1653 | 23 | 0.0710 | 0.0320 | 0.9541 | | 0.0197 | 0.1958 | 40 | 0.3963 | 0.9191 | 0.9206 | 0.9191 | 0.8951 | 423 | 17885 | 1584 | 28 | 0.0802 | 0.0325 | 0.9453 | | 0.0181 | 0.2448 | 50 | 0.3524 | 0.9155 | 0.9176 | 0.9155 | 0.8882 | 346 | 17891 | 1661 | 22 | 0.0673 | 0.0324 | 0.9794 | | 0.0152 | 0.2938 | 60 | 0.5161 | 0.9050 | 0.9102 | 0.9050 | 0.8654 | 119 | 17908 | 1888 | 5 | 0.0857 | 0.0314 | 0.9582 | | 0.0155 | 0.3427 | 70 | 0.6375 | 0.9037 | 0.9120 | 0.9037 | 0.8622 | 90 | 17912 | 1917 | 1 | 0.1395 | 0.0307 | 0.9384 | | 0.0193 | 0.3917 | 80 | 0.3521 | 0.9119 | 0.9153 | 0.9119 | 0.8808 | 267 | 17899 | 1740 | 14 | 0.0643 | 0.0309 | 0.9816 | | 0.0158 | 0.4406 | 90 | 0.3775 | 0.9066 | 0.9113 | 0.9066 | 0.8692 | 154 | 17906 | 1853 | 7 | 0.0613 | 0.0290 | 0.9839 | | 0.017 | 0.4896 | 100 | 0.4076 | 0.9115 | 0.9131 | 0.9115 | 0.8803 | 265 | 17893 | 1742 | 20 | 0.0588 | 0.0271 | 0.9849 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1