File size: 6,945 Bytes
94a9921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- f1
model-index:
- name: wav2vec2_ASV_deepfake_audio_detection
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2_ASV_deepfake_audio_detection

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5628
- Accuracy: 0.8999
- Precision: 0.9057
- F1: 0.8612
- Tp: 181
- Tn: 16068
- Fn: 1800
- Fp: 8
- Auc Roc: 0.9372

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 100
- eval_batch_size: 100
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 400
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | F1     | Tp  | Tn    | Fn   | Fp  | Auc Roc |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:---:|:-----:|:----:|:---:|:-------:|
| 0.693         | 0.1143 | 10   | 0.6628          | 0.8854   | 0.8117    | 0.8385 | 23  | 15964 | 1958 | 112 | 0.5001  |
| 0.6589        | 0.2286 | 20   | 0.4915          | 0.8903   | 0.7926    | 0.8386 | 0   | 16076 | 1981 | 0   | 0.5030  |
| 0.5546        | 0.3429 | 30   | 0.3825          | 0.8865   | 0.8231    | 0.8406 | 39  | 15969 | 1942 | 107 | 0.5748  |
| 0.3566        | 0.4571 | 40   | 0.3403          | 0.8909   | 0.8620    | 0.8419 | 28  | 16059 | 1953 | 17  | 0.6201  |
| 0.2115        | 0.5714 | 50   | 0.3617          | 0.8923   | 0.8908    | 0.8442 | 43  | 16070 | 1938 | 6   | 0.7028  |
| 0.1636        | 0.6857 | 60   | 0.3428          | 0.8958   | 0.8756    | 0.8586 | 182 | 15993 | 1799 | 83  | 0.7968  |
| 0.1415        | 0.8    | 70   | 0.3899          | 0.8925   | 0.9015    | 0.8440 | 41  | 16075 | 1940 | 1   | 0.6722  |
| 0.11          | 0.9143 | 80   | 0.3756          | 0.8930   | 0.9024    | 0.8452 | 50  | 16075 | 1931 | 1   | 0.7490  |
| 0.1041        | 1.0286 | 90   | 0.3885          | 0.8960   | 0.9006    | 0.8526 | 110 | 16069 | 1871 | 7   | 0.6362  |
| 0.0888        | 1.1429 | 100  | 0.3484          | 0.8995   | 0.8936    | 0.8630 | 207 | 16036 | 1774 | 40  | 0.8231  |
| 0.0669        | 1.2571 | 110  | 0.3386          | 0.9049   | 0.9040    | 0.8734 | 299 | 16041 | 1682 | 35  | 0.8354  |
| 0.0552        | 1.3714 | 120  | 0.4530          | 0.8942   | 0.9055    | 0.8480 | 71  | 16076 | 1910 | 0   | 0.8554  |
| 0.071         | 1.4857 | 130  | 0.4327          | 0.8963   | 0.8937    | 0.8545 | 128 | 16057 | 1853 | 19  | 0.8543  |
| 0.0665        | 1.6    | 140  | 0.4547          | 0.8947   | 0.9045    | 0.8491 | 80  | 16075 | 1901 | 1   | 0.8065  |
| 0.054         | 1.7143 | 150  | 0.3210          | 0.9148   | 0.9064    | 0.8970 | 592 | 15926 | 1389 | 150 | 0.8851  |
| 0.0575        | 1.8286 | 160  | 0.4901          | 0.8934   | 0.9012    | 0.8462 | 58  | 16074 | 1923 | 2   | 0.7591  |
| 0.0437        | 1.9429 | 170  | 0.4849          | 0.8979   | 0.9036    | 0.8568 | 144 | 16069 | 1837 | 7   | 0.6435  |
| 0.0471        | 2.0571 | 180  | 0.3822          | 0.9071   | 0.9103    | 0.8767 | 324 | 16056 | 1657 | 20  | 0.9277  |
| 0.0377        | 2.1714 | 190  | 0.5301          | 0.8928   | 0.8962    | 0.8450 | 49  | 16072 | 1932 | 4   | 0.9112  |
| 0.0327        | 2.2857 | 200  | 0.5534          | 0.8920   | 0.9036    | 0.8426 | 30  | 16076 | 1951 | 0   | 0.8755  |
| 0.0522        | 2.4    | 210  | 0.2332          | 0.9260   | 0.9192    | 0.9162 | 865 | 15856 | 1116 | 220 | 0.9448  |
| 0.0449        | 2.5143 | 220  | 0.3034          | 0.9102   | 0.9104    | 0.8835 | 397 | 16038 | 1584 | 38  | 0.9453  |
| 0.0338        | 2.6286 | 230  | 0.4001          | 0.9018   | 0.9072    | 0.8654 | 218 | 16066 | 1763 | 10  | 0.9153  |
| 0.0337        | 2.7429 | 240  | 0.4761          | 0.8973   | 0.9056    | 0.8552 | 130 | 16073 | 1851 | 3   | 0.8789  |
| 0.0347        | 2.8571 | 250  | 0.5613          | 0.8921   | 0.9037    | 0.8429 | 32  | 16076 | 1949 | 0   | 0.9068  |
| 0.0301        | 2.9714 | 260  | 0.4896          | 0.8967   | 0.9025    | 0.8540 | 121 | 16070 | 1860 | 6   | 0.9480  |
| 0.0208        | 3.0857 | 270  | 0.5223          | 0.8983   | 0.9053    | 0.8575 | 149 | 16071 | 1832 | 5   | 0.9471  |
| 0.0197        | 3.2    | 280  | 0.5003          | 0.9024   | 0.9068    | 0.8669 | 232 | 16063 | 1749 | 13  | 0.9445  |
| 0.0167        | 3.3143 | 290  | 0.4328          | 0.9087   | 0.9123    | 0.8796 | 351 | 16057 | 1630 | 19  | 0.9561  |
| 0.0235        | 3.4286 | 300  | 0.3612          | 0.9097   | 0.9115    | 0.8821 | 380 | 16047 | 1601 | 29  | 0.9596  |
| 0.0207        | 3.5429 | 310  | 0.3538          | 0.9158   | 0.9169    | 0.8934 | 498 | 16038 | 1483 | 38  | 0.9591  |
| 0.0192        | 3.6571 | 320  | 0.4185          | 0.9145   | 0.9171    | 0.8907 | 465 | 16049 | 1516 | 27  | 0.9404  |
| 0.0176        | 3.7714 | 330  | 0.6594          | 0.8926   | 0.9017    | 0.8443 | 43  | 16075 | 1938 | 1   | 0.8734  |
| 0.0174        | 3.8857 | 340  | 0.5727          | 0.8995   | 0.9073    | 0.8600 | 170 | 16072 | 1811 | 4   | 0.9276  |
| 0.021         | 4.0    | 350  | 0.5943          | 0.8937   | 0.8988    | 0.8471 | 65  | 16072 | 1916 | 4   | 0.9460  |
| 0.02          | 4.1143 | 360  | 0.5183          | 0.8982   | 0.9040    | 0.8574 | 149 | 16069 | 1832 | 7   | 0.9507  |
| 0.015         | 4.2286 | 370  | 0.5329          | 0.8980   | 0.9037    | 0.8570 | 146 | 16069 | 1835 | 7   | 0.9477  |
| 0.0139        | 4.3429 | 380  | 0.5545          | 0.8967   | 0.9017    | 0.8541 | 122 | 16069 | 1859 | 7   | 0.9438  |
| 0.0103        | 4.4571 | 390  | 0.5638          | 0.8969   | 0.9021    | 0.8546 | 126 | 16069 | 1855 | 7   | 0.9403  |
| 0.0099        | 4.5714 | 400  | 0.5094          | 0.9030   | 0.9078    | 0.8679 | 241 | 16064 | 1740 | 12  | 0.9419  |
| 0.0121        | 4.6857 | 410  | 0.5066          | 0.9049   | 0.9099    | 0.8717 | 275 | 16064 | 1706 | 12  | 0.9406  |
| 0.0122        | 4.8    | 420  | 0.5700          | 0.8992   | 0.9047    | 0.8596 | 168 | 16068 | 1813 | 8   | 0.9326  |
| 0.0155        | 4.9143 | 430  | 0.5628          | 0.8999   | 0.9057    | 0.8612 | 181 | 16068 | 1800 | 8   | 0.9372  |


### Framework versions

- Transformers 4.44.1
- Pytorch 2.2.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1