janrodriguez commited on
Commit
b6cee00
1 Parent(s): 900380d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -10
README.md CHANGED
@@ -1,15 +1,103 @@
1
  ---
2
- license: cc-by-4.0
3
- language:
4
- - es
5
- base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
- # Training data
9
 
10
- Model trained on the [DisTEMIST](https://doi.org/10.5281/zenodo.7614764) corpus.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- # Citation
13
  Please cite the following works:
14
 
15
  ```
@@ -41,7 +129,15 @@ Please cite the following works:
41
  }
42
  ```
43
 
44
- # Contacting authors
45
- jan.rodriguez [at] bsc.es
 
 
 
 
 
 
 
 
 
46
 
47
- ## More information on data, usage, limitations, and performance metrics soon
 
1
  ---
2
+ language:
3
+ - es
4
+ tags:
5
+ - biomedical
6
+ - clinical
7
+ - EHR
8
+ - spanish
9
+ - diseases
10
+ license: apache-2.0
11
+ metrics:
12
+ - precision
13
+ - recall
14
+ - f1
15
+ base_model:
16
+ - PlanTL-GOB-ES/bsc-bio-ehr-es
17
+
18
+ model-index:
19
+ - name: BSC-NLP4BIA/bsc-bio-ehr-es-distemist
20
+ results:
21
+ - task:
22
+ type: token-classification
23
+ dataset:
24
+ name: DisTEMIST
25
+ type: DisTEMIST
26
+ metrics:
27
+ - name: precision
28
+ type: precision
29
+ value: 0.754
30
+ - name: recall
31
+ type: recall
32
+ value: 0.759
33
+ - name: f1
34
+ type: f1
35
+ value: 0.757
36
+ widget:
37
+ - text: "El diagnóstico definitivo de nuestro paciente fue de un Adenocarcinoma de pulmón cT2a cN3 cM1a Estadio IV (por una única lesión pulmonar contralateral) PD-L1 90%, EGFR negativo, ALK negativo y ROS-1 negativo."
38
+ - text: "Durante el ingreso se realiza una TC, observándose un nódulo pulmonar en el LII y una masa renal derecha indeterminada. Se realiza punción biopsia del nódulo pulmonar, con hallazgos altamente sospechosos de carcinoma."
39
+ - text: "Trombosis paraneoplásica con sospecha de hepatocarcinoma por imagen, sobre hígado cirrótico, en paciente con índice Child-Pugh B."
40
+
41
  ---
42
 
 
43
 
44
+ # DISEASE-NER-ES
45
+
46
+ ## Table of contents
47
+ <details>
48
+ <summary>Click to expand</summary>
49
+
50
+ - [Model description](#model-description)
51
+ - [How to use](#how-to-use)
52
+ - [Limitations and bias](#limitations-and-bias)
53
+ - [Training](#training)
54
+ - [Evaluation](#evaluation)
55
+ - [Additional information](#additional-information)
56
+ - [Authors](#authors)
57
+ - [Contact information](#contact-information)
58
+ - [Licensing information](#licensing-information)
59
+ - [Funding](#funding)
60
+ - [Citing information](#citing-information)
61
+ - [Disclaimer](#disclaimer)
62
+
63
+ </details>
64
+
65
+ ## Model description
66
+ A fine-tuned version of the [bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) model on the [DisTEMIST](https://zenodo.org/records/7614764) corpus (original Spanish Gold Standard).
67
+
68
+ For further information, check the [official website](https://temu.bsc.es/distemist/).
69
+
70
+ ## How to use
71
+
72
+ ⚠ We recommend pre-tokenizing the input text into words instead of providing it directly to the model, as this is how the model was trained. Otherwise, the results and performance might get affected.
73
+
74
+ A usage example can be found [here](https://github.com/nlp4bia-bsc/hugging-face-pipeline/blob/main/simple_inference.ipynb).
75
+
76
+ ## Limitations and bias
77
+ At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
78
+
79
+ ## Training
80
+ The model was trained using the Barcelona Supercomputing Center infrastructure.
81
+
82
+ ## Evaluation
83
+ F1 Score on DisTEMIST: 0.757.
84
+
85
+ ## Additional information
86
+
87
+ ### Authors
88
+ NLP4BIA team at the Barcelona Supercomputing Center ([email protected]).
89
+
90
+ ### Contact information
91
+ jan.rodriguez [at] bsc.es
92
+
93
+ ### Licensing information
94
+ [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
95
+
96
+ ### Funding
97
+ This research was funded by the Ministerio de Ciencia e Innovación (MICINN) under project AI4ProfHealth (PID2020-119266RA-I00 MICIU/AEI/10.13039/501100011033) and BARITONE (TED2021-129974B-C22). This work is also supported by the European Union’s Horizon Europe Co-ordination \& Support Action under Grant Agreement No 101080430 (AI4HF) as well as Grant Agreement No 101057849 (DataTool4Heartproject).
98
+
99
+ ### Citing information
100
 
 
101
  Please cite the following works:
102
 
103
  ```
 
129
  }
130
  ```
131
 
132
+ ### Disclaimer
133
+
134
+ The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
135
+
136
+ When third parties deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence.
137
+
138
+ ---
139
+ Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.
140
+
141
+ Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.
142
+
143