--- license: apache-2.0 metrics: - cer --- ## Welcome If you find this model helpful, please *like* this model and star us on https://github.com/LianjiaTech/BELLE ! # Belle-whisper-large-v2-zh Fine tune whisper-large-v2 to improve Chinese speech recognition, Belle-whisper-large-v2-zh has 30-70% relative improvements on Chinese ASR benchmark(AISHELL1, AISHELL2, WENETSPEECH, HKUST). ## Usage ```python from transformers import pipeline transcriber = pipeline( "automatic-speech-recognition", model="BELLE-2/Belle-whisper-large-v2-zh" ) transcriber.model.config.forced_decoder_ids = ( transcriber.tokenizer.get_decoder_prompt_ids( language="zh", task="transcribe" ) ) transcription = transcriber("my_audio.wav") ``` ## Fine-tuning | Model | (Re)Sample Rate | Train Datasets | Fine-tuning (full or peft) | |:----------------:|:-------:|:----------------------------------------------------------:|:-----------:| | Belle-whisper-large-v2-zh | 16KHz | [AISHELL-1](https://openslr.magicdatatech.com/resources/33/) [AISHELL-2](https://www.aishelltech.com/aishell_2) [WenetSpeech](https://wenet.org.cn/WenetSpeech/) [HKUST](https://catalog.ldc.upenn.edu/LDC2005S15) | [full fine-tuning](https://github.com/shuaijiang/Whisper-Finetune) | ## CER | Model | Language Tag | aishell_1_test |aishell_2_test| wenetspeech_net | wenetspeech_meeting | HKUST_dev| |:----------------:|:-------:|:-----------:|:-----------:|:--------:|:-----------:|:-------:| | whisper-large-v2 | Chinese | 0.08818 | 0.06183 | 0.12343 | 0.26413 | 0.31917 | | Belle-whisper-large-v2-zh | Chinese | 0.02549 | 0.03746 | 0.08503 | 0.14598 | 0.16289 |