File size: 2,200 Bytes
7557c66 9842e2d 7557c66 97a4484 9842e2d 6121288 aca1475 6121288 9842e2d 1fbf74b b7f30bb aca1475 9842e2d 4dfa997 9842e2d fb9897f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: apache-2.0
metrics:
- cer
---
## Welcome
If you find this model helpful, please *like* this model and star us on https://github.com/LianjiaTech/BELLE !
# Belle-whisper-large-v2-zh
Fine tune whisper-large-v2 to improve Chinese speech recognition, Belle-whisper-large-v2-zh has 30-70% relative improvements on Chinese ASR benchmark(AISHELL1, AISHELL2, WENETSPEECH, HKUST).
## Usage
```python
from transformers import pipeline
transcriber = pipeline(
"automatic-speech-recognition",
model="BELLE-2/Belle-whisper-large-v2-zh"
)
transcriber.model.config.forced_decoder_ids = (
transcriber.tokenizer.get_decoder_prompt_ids(
language="zh",
task="transcribe"
)
)
transcription = transcriber("my_audio.wav")
```
## Fine-tuning
| Model | (Re)Sample Rate | Train Datasets | Fine-tuning (full or peft) |
|:----------------:|:-------:|:----------------------------------------------------------:|:-----------:|
| Belle-whisper-large-v2-zh | 16KHz | [AISHELL-1](https://openslr.magicdatatech.com/resources/33/) [AISHELL-2](https://www.aishelltech.com/aishell_2) [WenetSpeech](https://wenet.org.cn/WenetSpeech/) [HKUST](https://catalog.ldc.upenn.edu/LDC2005S15) | [full fine-tuning](https://github.com/shuaijiang/Whisper-Finetune) |
If you want to fine-thuning the model on your datasets, please reference to our [github repo](https://github.com/shuaijiang/Whisper-Finetune)
## CER
| Model | Language Tag | aishell_1_test |aishell_2_test| wenetspeech_net | wenetspeech_meeting | HKUST_dev|
|:----------------:|:-------:|:-----------:|:-----------:|:--------:|:-----------:|:-------:|
| whisper-large-v2 | Chinese | 8.818% | 6.183% | 12.343% | 26.413% | 31.917% |
| Belle-whisper-large-v2-zh | Chinese | 2.549% | 3.746% | 8.503% | 14.598% | 16.289% |
## Citation
Please cite our paper and github when using our code, data or model.
```
@misc{BELLE,
author = {BELLEGroup},
title = {BELLE: Be Everyone's Large Language model Engine},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/LianjiaTech/BELLE}},
}
``` |