--- license: apache-2.0 --- # Model Card for Model ID ## Welcome If you find this model helpful, please *like* this model and star us on https://github.com/LianjiaTech/BELLE ! ## 📝Belle-VL ### 背景介绍 **社区目前已经有很多多模态大语言模型相关开源工作,但大多以英文能力为主,比如[LLava](https://github.com/haotian-liu/LLaVA),[CogVLM](https://github.com/THUDM/CogVLM)等,而中文多模态大语言模型比如[VisualGLM-6B](https://github.com/THUDM/VisualGLM-6B)、[Qwen-VL](https://github.com/QwenLM/Qwen-VL)的语言模型基座均较小,实际应用中很难兼顾视觉和语言能力,因此Belle-VL选择基于更强的语言模型基座来扩展模型的视觉能力,为社区提供更加灵活的选择。** ### 模型简介 在模型结构方面,我们主要参考的[Qwen-VL](https://github.com/QwenLM/Qwen-VL)模型,原始Qwen-VL是基于Qwen7B模型训练而来,基座能力相对较弱,因此Belle-VL将语言模型扩展成了[Qwen14B-chat](https://huggingface.co/Qwen/Qwen-14B-Chat),在中文语言能力和视觉能力方面可以兼顾,具备更好的扩展性。 ### 训练策略 原始Qwen-vl采用了三阶段的训练方式,包括预训练、多任务训练和指令微调,依赖较大的数据和机器资源。受LLava1.5的启发,多模态指令微调比预训练更加重要,因此我们采用了两阶段的训练方式,如下图所示: ![Traing_stage](./train.png) ### 训练数据 * **预训练数据**:预训练数据主要是基于LLava 的[558k](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)英文指令数据及其对应的中文翻译数据,此外我们还收集了[Flickr30k-CNA](https://zero.so.com/) 以及从[AI Challenger](https://tianchi.aliyun.com/dataset/145781?spm=a2c22.12282016.0.0.5c823721PG2nBW)随机选取的100k数据 * **多模态指令数据**:指令微调阶段,数据主要来自[LLava](https://github.com/haotian-liu/LLaVA), [LRV-Instruction](https://github.com/FuxiaoLiu/LRV-Instruction), [LLaVAR](https://github.com/SALT-NLP/LLaVAR),[LVIS-INSTRUCT4V](https://github.com/X2FD/LVIS-INSTRUCT4V)等开源项目,我们也对其中部分数据进行了翻译,在此真诚的感谢他们为开源所做出的贡献! ### 模型使用 ``` python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig model_dir = '/path/to_finetuned_model/' img_path = 'you_image_path' tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True).eval() model.generation_config = GenerationConfig.from_pretrained(model_dir, trust_remote_code=True) question = '详细描述一下这张图' query = tokenizer.from_list_format([ {'image': img_path}, # Either a local path or an url {'text': question}, ]) response, history = model.chat(tokenizer, query=query, history=None) print(response) #or query = f'{img_path}\n{question}' response, history = model.chat(tokenizer, query=query, history=None) print(response) ``` ### MME Benchmark [MME](https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation)是一个针对多模态大型语言模型的全面评估基准。它在总共14个子任务上测量感知和认知能力,包括 包括存在性、计数、位置、颜色、海报、名人、场景、地标、艺术作品、OCR、常识推理、数值计算、文本翻译和代码推理等。BELLE-VL在感知评测共获得1606.00分,超过LLava和Qwen-VL.详情如下: | Category | Score | |------------------------|-------| | **Perception** | **1620.10** | | --Existence | 195.00 | | --Count | 173.33 | | --Position | 1310.00 | | --Color | 185.00 | | --Posters | 160.88| | --Celebrity | 135.88| | --Scene | 150.00| | --Landmark | 169.25 | | --Artwork | 143.50 | | --OCR | 177.50 | | Category | Score | |------------------------|-------| | **Cognition** | **305.36** | | --Commonsense Reasoning | 132.86| | --Numerical Calculation | 42.50 | | --Text Translation | 72.50 | | --Code Reasoning | 57.00 | ## Citation Please cite our paper and github when using our code, data or model. ``` @misc{BELLE, author = {BELLEGroup}, title = {BELLE: Be Everyone's Large Language model Engine}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/LianjiaTech/BELLE}}, } ```