hyxmmm commited on
Commit
b5e7ba2
β€’
1 Parent(s): 9af7f05

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -22
README.md CHANGED
@@ -15,13 +15,13 @@ language:
15
  <em>[Paper][Code][πŸ€—] (would be released soon)</em>
16
  </p>
17
 
18
- Infinity-Instruct-6M-0718-Mistral-7B is an opensource supervised instruction tuning model without reinforcement learning from human feedback (RLHF). This model is just finetuned on [Infinity-Instruct-6M and Infinity-Instruct-0718](https://huggingface.co/datasets/BAAI/Infinity-Instruct) and showing favorable results on AlpacaEval 2.0 compared to Mixtral 8x22B v0.1, Gemini Pro, and GPT-4.
19
 
20
  ## **News**
21
 
22
- - πŸ”₯πŸ”₯πŸ”₯[2024/07/18] We release the model weights of [InfInstruct-Mistral-7B 0718](https://huggingface.co/BAAI/Infinity-Instruct-3M-0718-mistral-7B), [InfInstruct-Llama3-70B 0718](https://huggingface.co/BAAI/Infinity-Instruct-3M-0718-Llama3-70B).
23
 
24
- - πŸ”₯πŸ”₯πŸ”₯[2024/07/18] We release the foundational dataset [Infinity-Instruct-6M](https://huggingface.co/datasets/BAAI/Infinity-Instruct) the chat dataset [Infinity-Instruct-0718](https://huggingface.co/datasets/BAAI/Infinity-Instruct).
25
 
26
  - πŸ”₯πŸ”₯πŸ”₯[2024/07/09] We release the model weights of [InfInstruct-Mistral-7B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B), [InfInstruct-Qwen2-7B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B), [InfInstruct-Llama3-8B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B), [InfInstruct-Llama3-70B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-70B), and [InfInstruct-Yi-1.5-9B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B).
27
 
@@ -39,7 +39,7 @@ Infinity-Instruct-6M-0718-Mistral-7B is an opensource supervised instruction tun
39
  <img src="fig/trainingflow.png">
40
  </p>
41
 
42
- Infinity-Instruct-6M-0718-Mistral-7B is tuned on Million-level instruction dataset [Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct). First, we apply the foundational dataset Infinity-Instruct-6M to improve the foundational ability (math & code) of Mistral-7B-v0.1, and get the foundational instruct model Infinity-Instruct-6M-Mistral-7B. Then we finetune the Infinity-Instruct-6M-Mistral-7B to get the stronger chat model Infinity-Instruct-6M-0718-Mistral-7B. Here is the training hyperparamers.
43
 
44
  ```bash
45
  epoch: 3
@@ -58,27 +58,23 @@ Thanks to [FlagScale](https://github.com/FlagOpen/FlagScale), we could concatena
58
 
59
  ## **Benchmark**
60
 
61
- | **Model** | **MT-Bench** | **AlpacaEval2.0** |
62
- |:-------------------------------:|:------------:|:-----------------:|
63
- | OpenHermes-2.5-Mistral-7B* | 7.5 | 16.2 |
64
- | Mistral-7B-Instruct-v0.2 | 7.6 | 17.1 |
65
- | Llama-3-8B-Instruct | 8.1 | 22.9 |
66
- | GPT-4-0314 | 9.0 | 35.3 |
67
- | Mixtral 8x7B v0.1 | 8.3 | 23.7 |
68
- | Mixtral 8x22B v0.1 | -- | 30.9 |
69
- | Gemini Pro | -- | 24.4 |
70
- | InfInstruct-3M-Mistral-7B* | 7.6 | 16.2 |
71
- | InfInstruct-3M-0613-Mistral-7B* | 8.1 | 25.5 |
72
- | InfInstruct-3M-0625-Mistral-7B* | 8.1 | 31.42 |
73
- | InfInstruct-3M-0718-Mistral-7B* | 8.1 | **40.0** |
74
 
75
  *denote the model is finetuned without reinforcement learning from human feedback (RLHF).
76
 
77
- We evaluate Infinity-Instruct-6M-0718-Mistral-7B on the two most popular instructions following benchmarks. Mt-Bench is a set of challenging multi-turn questions including code, math and routine dialogue. AlpacaEval2.0 is based on AlpacaFarm evaluation set. Both of these two benchmarks use GPT-4 to judge the model answer. AlpacaEval2.0 displays a high agreement rate with human-annotated benchmark, Chatbot Arena. The result shows that InfInstruct-6M-0718-Mistral-7B achieved 40.0 in AlpacaEval2.0, which is higher than the 35.5 of GPT4-0314 although it does not yet use RLHF. InfInstruct-6M-0718-Mistral-7B also achieves 8.1 in MT-Bench, which is comparable to the state-of-the-art billion-parameter LLM such as Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2.
78
-
79
  ## **How to use**
80
 
81
- Infinity-Instruct-6M-0718-Mistral-7B adopt the same chat template of [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B):
82
 
83
  ```bash
84
  <|im_start|>system
@@ -98,11 +94,11 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorLis
98
  import torch
99
  device = "cuda" # the device to load the model onto
100
 
101
- model = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-6M-0718-Mistral-7B",
102
  torch_dtype=torch.bfloat16,
103
  device_map="auto"
104
  )
105
- tokenizer = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-6M-0718-Mistral-7BB")
106
 
107
  # This template is copied from OpenHermers-mistral-2.5 (https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
108
  prompt = "Give me a short introduction to large language model."
 
15
  <em>[Paper][Code][πŸ€—] (would be released soon)</em>
16
  </p>
17
 
18
+ Infinity-Instruct-7M-0729-Mistral-7B is an opensource supervised instruction tuning model without reinforcement learning from human feedback (RLHF). This model is just finetuned on [Infinity-Instruct-7M and Infinity-Instruct-0729](https://huggingface.co/datasets/BAAI/Infinity-Instruct) and showing favorable results on AlpacaEval 2.0 compared to Mixtral 8x22B v0.1, Gemini Pro, and GPT-4.
19
 
20
  ## **News**
21
 
22
+ - πŸ”₯πŸ”₯πŸ”₯[2024/08/02] We release the model weights of [InfInstruct-Llama3.1-70B 0729](https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-70B), [InfInstruct-Llama3.1-8B 0729](https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-70B), [InfInstruct-Mistral-7B 0729](https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Mistral-7B).
23
 
24
+ - πŸ”₯πŸ”₯πŸ”₯[2024/08/02] We release the 7M foundational dataset [Infinity-Instruct-7M](https://huggingface.co/datasets/BAAI/Infinity-Instruct).
25
 
26
  - πŸ”₯πŸ”₯πŸ”₯[2024/07/09] We release the model weights of [InfInstruct-Mistral-7B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B), [InfInstruct-Qwen2-7B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B), [InfInstruct-Llama3-8B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B), [InfInstruct-Llama3-70B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-70B), and [InfInstruct-Yi-1.5-9B 0625](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B).
27
 
 
39
  <img src="fig/trainingflow.png">
40
  </p>
41
 
42
+ Infinity-Instruct-7M-0729-Mistral-7B is tuned on Million-level instruction dataset [Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct). First, we apply the foundational dataset Infinity-Instruct-7M to improve the foundational ability (math & code) of Mistral-7B-v0.1, and get the foundational instruct model Infinity-Instruct-7M-Mistral-7B. Then we finetune the Infinity-Instruct-7M-Mistral-7B to get the stronger chat model Infinity-Instruct-7M-0729-Mistral-7B. Here is the training hyperparamers.
43
 
44
  ```bash
45
  epoch: 3
 
58
 
59
  ## **Benchmark**
60
 
61
+ | **Model** | **MT-Bench** | **AlpacaEval2.0** | **Arena-hard** |
62
+ |:----------------------------:|:------------:|:-----------------:|:-----------------:|
63
+ | GPT-4-0314 | 9.0 | 35.3 | 50.0 |
64
+ | GPT-4-0613 | 9.2 | 30.2 | 37.9 |
65
+ | GPT-4-1106 | 9.3 | 30.2 | -- |
66
+ | Gemini Pro | -- | 24.4 | 17.8 |
67
+ | Mixtral 8x7B v0.1 | 8.3 | 23.7 | 23.4 |
68
+ | Mistral-7B-Instruct-v0.2 | 7.6 | 17.1 | -- |
69
+ | InfInstruct-3M-0613-Mistral-7B | 8.1 | 25.5 | -- |
70
+ | InfInstruct-3M-0625-Mistral-7B | 8.1 | 31.4 | -- |
71
+ | **InfInstruct-3M-0629-Mistral-7B** | **8.1** | **40.0** | **26.9** |
 
 
72
 
73
  *denote the model is finetuned without reinforcement learning from human feedback (RLHF).
74
 
 
 
75
  ## **How to use**
76
 
77
+ Infinity-Instruct-7M-0729-Mistral-7B adopt the same chat template of [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B):
78
 
79
  ```bash
80
  <|im_start|>system
 
94
  import torch
95
  device = "cuda" # the device to load the model onto
96
 
97
+ model = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-7M-0729-Mistral-7B",
98
  torch_dtype=torch.bfloat16,
99
  device_map="auto"
100
  )
101
+ tokenizer = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-7M-0729-Mistral-7BB")
102
 
103
  # This template is copied from OpenHermers-mistral-2.5 (https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
104
  prompt = "Give me a short introduction to large language model."