AzzamRadman
commited on
Commit
•
270b692
1
Parent(s):
dc1ed18
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 248.79 +/- 14.32
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff7ba97b160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff7ba97b1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff7ba97b280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff7ba97b310>", "_build": "<function ActorCriticPolicy._build at 0x7ff7ba97b3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff7ba97b430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff7ba97b4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff7ba97b550>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff7ba97b5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff7ba97b670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff7ba97b700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff7ba97b790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff7ba974080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682296605912317386, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALblYL4v1xw/YtCZPorOp77lLOa7TjoCPgAAAAAAAAAAmnUkvUjvprrFrru6ACSttWV4Rbo1tNc5AACAPwAAgD+aYpC8afZaPQjKBL7k0Tm9oHe4vZvZJzwAAAAAAAAAAAC4yLu+hZY/3cmBPdYL8b7i7py95kpfvQAAAAAAAAAAGrDJPUPVKj/8zZ69Gi7rvs4x7D2GyxC+AAAAAAAAAAAmbZW9Ila1P95BXb6ZxLO+IOTwu67VOr4AAAAAAAAAAGYo9Lw9KVu7e0/qvJBCPj19Tv+5+/lLugAAgD8AAIA/s+uMPVzOTLzx2Ms8hb9mvY4rr70vBD6+AACAPwAAgD8zjyS8bvdHPyImzr0d27m+5rDEvCxGLD0AAAAAAAAAAA1lcz7texy9G/CBPUQ9F7yzjIq+rgnfvAAAgD8AAIA/ZlYKO1IPtrvaLJa9yYoyvVQPdzzbvz++AACAPwAAgD9mZrO7htK8P1UKor3E/ac+Oh7MOyIekTwAAAAAAAAAADPDhzr4fjs/A3/hPNZWpL5rEUK9WuNAPQAAAAAAAAAApsXGPQ91Wz5+ATC+lM9Pvvt1uzwdJ9W8AAAAAAAAAADA4bS9hdOSuSBVDbRVKwav5bMfuRrnoTMAAAAAAACAPyBLDD7P/ug+20NYvdFjM74nuEc9dTotPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF/NzQ1OIakCUhpRSlIwBbJRNMgGMAXSUR0CQ7AEQoTf0dX2UKGgGaAloD0MIJ6Q1Bh37cECUhpRSlGgVTR8BaBZHQJDsIDcM3Id1fZQoaAZoCWgPQwiBPSZS2rtxQJSGlFKUaBVNFgFoFkdAkOxMajvd/XV9lChoBmgJaA9DCCSBBpu6t3FAlIaUUpRoFUv/aBZHQJDtNAC4jKR1fZQoaAZoCWgPQwh3oE55NKlwQJSGlFKUaBVNKgFoFkdAkO1LMX7+DXV9lChoBmgJaA9DCKeyKOwin25AlIaUUpRoFU0PAWgWR0CQ7gQO4G2UdX2UKGgGaAloD0MIAOZatIDjcECUhpRSlGgVTS4BaBZHQJDuHQAuIyl1fZQoaAZoCWgPQwin6h7ZXNZyQJSGlFKUaBVNHgFoFkdAkO5vSpiqhnV9lChoBmgJaA9DCAfOGVFa5G1AlIaUUpRoFU0mAWgWR0CQ7zOH31zydX2UKGgGaAloD0MIsK91qZFgckCUhpRSlGgVTSsBaBZHQJDvcbaRISV1fZQoaAZoCWgPQwi2hlJ7US5wQJSGlFKUaBVNEwFoFkdAkO/rEcbR4XV9lChoBmgJaA9DCKlsWFOZj3FAlIaUUpRoFU0RAWgWR0CQ8WRXOnl5dX2UKGgGaAloD0MIQuvhywR8cUCUhpRSlGgVTUgBaBZHQJDxum+Cbtt1fZQoaAZoCWgPQwgCLPLrh9RwQJSGlFKUaBVNEQFoFkdAkPHdoFmnO3V9lChoBmgJaA9DCDwx68UQKXJAlIaUUpRoFU0aAWgWR0CQ8hh5gPVedX2UKGgGaAloD0MIuDzWjAy4b0CUhpRSlGgVTbQBaBZHQJD0NoUSIxh1fZQoaAZoCWgPQwhGQfD49uJuQJSGlFKUaBVNKQFoFkdAkPR1G0/nn3V9lChoBmgJaA9DCOCfUiXKBXBAlIaUUpRoFU06AWgWR0CQ9UBdD6WPdX2UKGgGaAloD0MI16axvdY+cUCUhpRSlGgVTVsBaBZHQJD2D4VRDTl1fZQoaAZoCWgPQwj8cJAQpUJyQJSGlFKUaBVNGQFoFkdAkPYgXZXdTHV9lChoBmgJaA9DCMU4fxPKtHJAlIaUUpRoFU06AWgWR0CQ9khK15SndX2UKGgGaAloD0MIXW3F/jIzckCUhpRSlGgVTUIBaBZHQJD3NZha1Tl1fZQoaAZoCWgPQwiGyypshvhxQJSGlFKUaBVNaQFoFkdAkPeIg3cYZXV9lChoBmgJaA9DCDmbjgCuJHFAlIaUUpRoFU1AAWgWR0CQ95PLgXMydX2UKGgGaAloD0MICOdTxyracECUhpRSlGgVTRwBaBZHQJD3oPxx1gZ1fZQoaAZoCWgPQwhpdAexM2hxQJSGlFKUaBVNPgFoFkdAkPg49Pk7wXV9lChoBmgJaA9DCIs4nWSrbnFAlIaUUpRoFU0iAWgWR0CQ+DmapgkUdX2UKGgGaAloD0MIRfRr6+dXcUCUhpRSlGgVTQwBaBZHQJD5gYxcmjV1fZQoaAZoCWgPQwjpnJ/iuERwQJSGlFKUaBVNNQFoFkdAkPqU5p8F6nV9lChoBmgJaA9DCIANiBDXbW5AlIaUUpRoFU1BAWgWR0CQ+qA3kxREdX2UKGgGaAloD0MI9kTXhR9Tb0CUhpRSlGgVTUEBaBZHQJD7QFxGUfR1fZQoaAZoCWgPQwjjcOZXc8lvQJSGlFKUaBVNEgFoFkdAkPwVxXGOuXV9lChoBmgJaA9DCOBL4UEz9WxAlIaUUpRoFU0JAWgWR0CQ/bhg3LmqdX2UKGgGaAloD0MIO4veqQC9cECUhpRSlGgVTTEBaBZHQJD96bDuSfV1fZQoaAZoCWgPQwgp0Cfy5CZxQJSGlFKUaBVNNAFoFkdAkP7mZVn27HV9lChoBmgJaA9DCCyAKQNHaHJAlIaUUpRoFU0yAWgWR0CQ/ucurZJ1dX2UKGgGaAloD0MIgVt389RAb0CUhpRSlGgVTQgBaBZHQJD/NV4oqkN1fZQoaAZoCWgPQwgmHHqLh7VwQJSGlFKUaBVNDgFoFkdAkP94wAU+LXV9lChoBmgJaA9DCIF7nj9t/HBAlIaUUpRoFU0YAWgWR0CQ/6iKiwjddX2UKGgGaAloD0MIMBAEyFC3cECUhpRSlGgVTT0BaBZHQJEAaGXXyy51fZQoaAZoCWgPQwiTizGwjg1zQJSGlFKUaBVNHwFoFkdAkQCsVDa4+nV9lChoBmgJaA9DCKSl8nYEr25AlIaUUpRoFU0sAWgWR0CRAQZ2ZApsdX2UKGgGaAloD0MI6zU9KCgCckCUhpRSlGgVTQQBaBZHQJEBOZ8a4tp1fZQoaAZoCWgPQwgWhV0UPTVwQJSGlFKUaBVNGgFoFkdAkQLOryUcGXV9lChoBmgJaA9DCNXnaiv28GtAlIaUUpRoFU0lAWgWR0CRAxLGrCFcdX2UKGgGaAloD0MIgzKNJldocECUhpRSlGgVTTIBaBZHQJEFAV+I/JN1fZQoaAZoCWgPQwh/+PnvQQtyQJSGlFKUaBVNYgFoFkdAkR1PhZQpF3V9lChoBmgJaA9DCHUiwVQzxm5AlIaUUpRoFU0xAWgWR0CRHX8IRh+fdX2UKGgGaAloD0MIPKJCdbNqckCUhpRSlGgVTRQBaBZHQJEedw3o9s91fZQoaAZoCWgPQwizs+idStpwQJSGlFKUaBVNRQFoFkdAkR6On2qT83V9lChoBmgJaA9DCAzIXu/+x29AlIaUUpRoFU0iAWgWR0CRHrPhhpg1dX2UKGgGaAloD0MIsK4K1GKya0CUhpRSlGgVTSwBaBZHQJEevOiWVu91fZQoaAZoCWgPQwhTeTvC6c1tQJSGlFKUaBVNIgFoFkdAkR8iVB2OhnV9lChoBmgJaA9DCBixTwDF9m9AlIaUUpRoFU0DAWgWR0CRHz9tdiUgdX2UKGgGaAloD0MID2Q9tTqjcECUhpRSlGgVTSABaBZHQJEfxWxQizN1fZQoaAZoCWgPQwgH7GryVPhyQJSGlFKUaBVNWgFoFkdAkSABbSqlxnV9lChoBmgJaA9DCHYb1H5rGnJAlIaUUpRoFU05AWgWR0CRIQsDW9UTdX2UKGgGaAloD0MIyOvBpHj3b0CUhpRSlGgVTVEBaBZHQJEh7Wvr4WV1fZQoaAZoCWgPQwh41QPmoYxvQJSGlFKUaBVNCwFoFkdAkSHrQokRjHV9lChoBmgJaA9DCEa28/1UJHBAlIaUUpRoFU0eAWgWR0CRIi32mHgxdX2UKGgGaAloD0MI5l31gPkYbkCUhpRSlGgVTTUBaBZHQJEkLu3MINV1fZQoaAZoCWgPQwgsgCkDR5JwQJSGlFKUaBVNDAFoFkdAkSWIXwb2lHV9lChoBmgJaA9DCFqdnKG4xnBAlIaUUpRoFU0QAWgWR0CRJcrMTviMdX2UKGgGaAloD0MIZ33KMVmEbkCUhpRSlGgVS/loFkdAkSalp9JBgXV9lChoBmgJaA9DCKUQyCUOXG9AlIaUUpRoFU0OAWgWR0CRJr2HLzPKdX2UKGgGaAloD0MIAvOQKd8lcECUhpRSlGgVTRQBaBZHQJEmveyiVSp1fZQoaAZoCWgPQwjH8UOlUeNwQJSGlFKUaBVNFwFoFkdAkScNfPX05HV9lChoBmgJaA9DCDtzDwnf429AlIaUUpRoFU0jAWgWR0CRJ8pe/pMYdX2UKGgGaAloD0MI41KVtjhxcUCUhpRSlGgVTTwBaBZHQJEoAddVvMt1fZQoaAZoCWgPQwiwO9154rZWQJSGlFKUaBVN6ANoFkdAkSiZsKsuF3V9lChoBmgJaA9DCJ6zBYRWf2tAlIaUUpRoFU1IAWgWR0CRKfEt/WlNdX2UKGgGaAloD0MIrYkFvuJeckCUhpRSlGgVTQ0BaBZHQJEqTK3d9Dx1fZQoaAZoCWgPQwgtX5fhfwZwQJSGlFKUaBVNMwFoFkdAkSp+AAhjfHV9lChoBmgJaA9DCKTGhJhLC25AlIaUUpRoFU0TAWgWR0CRKntdAxBWdX2UKGgGaAloD0MIRkHw+DbecUCUhpRSlGgVTYEBaBZHQJErP/YJ3Pl1fZQoaAZoCWgPQwirCaLuA5RMQJSGlFKUaBVL5WgWR0CRK1F1jiGWdX2UKGgGaAloD0MIs5lDUovOcECUhpRSlGgVTZkBaBZHQJEu0B2fTTh1fZQoaAZoCWgPQwg/An/4uQBxQJSGlFKUaBVNMwFoFkdAkS9QHmig03V9lChoBmgJaA9DCJOq7Sb4jXFAlIaUUpRoFU0jAWgWR0CRL6NSqEOBdX2UKGgGaAloD0MIzZAqihcGcECUhpRSlGgVTS8BaBZHQJEwJBHCoCN1fZQoaAZoCWgPQwjpZKn1fvZrQJSGlFKUaBVNBgFoFkdAkTAsotthu3V9lChoBmgJaA9DCKtZZ3xfYXFAlIaUUpRoFU0wAWgWR0CRMIJGOMl1dX2UKGgGaAloD0MI5DCYv4IAckCUhpRSlGgVTR4BaBZHQJEwwTWXkYJ1fZQoaAZoCWgPQwiKrDWU2gtwQJSGlFKUaBVNTwFoFkdAkTE0ulGgBnV9lChoBmgJaA9DCA3FHW/ym25AlIaUUpRoFU0aAWgWR0CRMrFrl/6PdX2UKGgGaAloD0MIJVmHo2sScUCUhpRSlGgVTRkBaBZHQJEzBlcyFf11fZQoaAZoCWgPQwiqYb8nllRxQJSGlFKUaBVNuQFoFkdAkTNUOI68x3V9lChoBmgJaA9DCPvMWZ9yf3JAlIaUUpRoFU1bAWgWR0CRM2eTV2A5dX2UKGgGaAloD0MIx2eyf15DcUCUhpRSlGgVTSIBaBZHQJEzgphF3IN1fZQoaAZoCWgPQwj5Eio4/FFxQJSGlFKUaBVNEwFoFkdAkTPgHVwxWXV9lChoBmgJaA9DCO2DLAsmUXFAlIaUUpRoFU05AWgWR0CRNAoM8YAKdX2UKGgGaAloD0MIXio25jX7cUCUhpRSlGgVTV8BaBZHQJE1/oKUmlZ1fZQoaAZoCWgPQwgMzXUaKQtxQJSGlFKUaBVNFQFoFkdAkTfXbuc+aHV9lChoBmgJaA9DCErToGher3BAlIaUUpRoFU0QAWgWR0CRODEpiI+GdX2UKGgGaAloD0MIhJ7Nqk/HcECUhpRSlGgVTRsBaBZHQJE49ImPYFt1fZQoaAZoCWgPQwgpCYm0jVhyQJSGlFKUaBVNQQFoFkdAkTkPp+tr9HV9lChoBmgJaA9DCERssHCSqnFAlIaUUpRoFU0rAWgWR0CROSeGwiaBdX2UKGgGaAloD0MIVaLsLWXkcECUhpRSlGgVTSIBaBZHQJE5Zf/m1Y11fZQoaAZoCWgPQwhYrrfN1BZvQJSGlFKUaBVNeAFoFkdAkTo/vrnkk3V9lChoBmgJaA9DCGYUyy0t6W1AlIaUUpRoFU0TAWgWR0CROtm4iHIqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8c4970a71651b4b7f238e085db049215707220e0bbeaf228931c4f4b3cc0457
|
3 |
+
size 147391
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff7ba97b160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff7ba97b1f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff7ba97b280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff7ba97b310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff7ba97b3a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff7ba97b430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff7ba97b4c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff7ba97b550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff7ba97b5e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff7ba97b670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff7ba97b700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff7ba97b790>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff7ba974080>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682296605912317386,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALblYL4v1xw/YtCZPorOp77lLOa7TjoCPgAAAAAAAAAAmnUkvUjvprrFrru6ACSttWV4Rbo1tNc5AACAPwAAgD+aYpC8afZaPQjKBL7k0Tm9oHe4vZvZJzwAAAAAAAAAAAC4yLu+hZY/3cmBPdYL8b7i7py95kpfvQAAAAAAAAAAGrDJPUPVKj/8zZ69Gi7rvs4x7D2GyxC+AAAAAAAAAAAmbZW9Ila1P95BXb6ZxLO+IOTwu67VOr4AAAAAAAAAAGYo9Lw9KVu7e0/qvJBCPj19Tv+5+/lLugAAgD8AAIA/s+uMPVzOTLzx2Ms8hb9mvY4rr70vBD6+AACAPwAAgD8zjyS8bvdHPyImzr0d27m+5rDEvCxGLD0AAAAAAAAAAA1lcz7texy9G/CBPUQ9F7yzjIq+rgnfvAAAgD8AAIA/ZlYKO1IPtrvaLJa9yYoyvVQPdzzbvz++AACAPwAAgD9mZrO7htK8P1UKor3E/ac+Oh7MOyIekTwAAAAAAAAAADPDhzr4fjs/A3/hPNZWpL5rEUK9WuNAPQAAAAAAAAAApsXGPQ91Wz5+ATC+lM9Pvvt1uzwdJ9W8AAAAAAAAAADA4bS9hdOSuSBVDbRVKwav5bMfuRrnoTMAAAAAAACAPyBLDD7P/ug+20NYvdFjM74nuEc9dTotPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF/NzQ1OIakCUhpRSlIwBbJRNMgGMAXSUR0CQ7AEQoTf0dX2UKGgGaAloD0MIJ6Q1Bh37cECUhpRSlGgVTR8BaBZHQJDsIDcM3Id1fZQoaAZoCWgPQwiBPSZS2rtxQJSGlFKUaBVNFgFoFkdAkOxMajvd/XV9lChoBmgJaA9DCCSBBpu6t3FAlIaUUpRoFUv/aBZHQJDtNAC4jKR1fZQoaAZoCWgPQwh3oE55NKlwQJSGlFKUaBVNKgFoFkdAkO1LMX7+DXV9lChoBmgJaA9DCKeyKOwin25AlIaUUpRoFU0PAWgWR0CQ7gQO4G2UdX2UKGgGaAloD0MIAOZatIDjcECUhpRSlGgVTS4BaBZHQJDuHQAuIyl1fZQoaAZoCWgPQwin6h7ZXNZyQJSGlFKUaBVNHgFoFkdAkO5vSpiqhnV9lChoBmgJaA9DCAfOGVFa5G1AlIaUUpRoFU0mAWgWR0CQ7zOH31zydX2UKGgGaAloD0MIsK91qZFgckCUhpRSlGgVTSsBaBZHQJDvcbaRISV1fZQoaAZoCWgPQwi2hlJ7US5wQJSGlFKUaBVNEwFoFkdAkO/rEcbR4XV9lChoBmgJaA9DCKlsWFOZj3FAlIaUUpRoFU0RAWgWR0CQ8WRXOnl5dX2UKGgGaAloD0MIQuvhywR8cUCUhpRSlGgVTUgBaBZHQJDxum+Cbtt1fZQoaAZoCWgPQwgCLPLrh9RwQJSGlFKUaBVNEQFoFkdAkPHdoFmnO3V9lChoBmgJaA9DCDwx68UQKXJAlIaUUpRoFU0aAWgWR0CQ8hh5gPVedX2UKGgGaAloD0MIuDzWjAy4b0CUhpRSlGgVTbQBaBZHQJD0NoUSIxh1fZQoaAZoCWgPQwhGQfD49uJuQJSGlFKUaBVNKQFoFkdAkPR1G0/nn3V9lChoBmgJaA9DCOCfUiXKBXBAlIaUUpRoFU06AWgWR0CQ9UBdD6WPdX2UKGgGaAloD0MI16axvdY+cUCUhpRSlGgVTVsBaBZHQJD2D4VRDTl1fZQoaAZoCWgPQwj8cJAQpUJyQJSGlFKUaBVNGQFoFkdAkPYgXZXdTHV9lChoBmgJaA9DCMU4fxPKtHJAlIaUUpRoFU06AWgWR0CQ9khK15SndX2UKGgGaAloD0MIXW3F/jIzckCUhpRSlGgVTUIBaBZHQJD3NZha1Tl1fZQoaAZoCWgPQwiGyypshvhxQJSGlFKUaBVNaQFoFkdAkPeIg3cYZXV9lChoBmgJaA9DCDmbjgCuJHFAlIaUUpRoFU1AAWgWR0CQ95PLgXMydX2UKGgGaAloD0MICOdTxyracECUhpRSlGgVTRwBaBZHQJD3oPxx1gZ1fZQoaAZoCWgPQwhpdAexM2hxQJSGlFKUaBVNPgFoFkdAkPg49Pk7wXV9lChoBmgJaA9DCIs4nWSrbnFAlIaUUpRoFU0iAWgWR0CQ+DmapgkUdX2UKGgGaAloD0MIRfRr6+dXcUCUhpRSlGgVTQwBaBZHQJD5gYxcmjV1fZQoaAZoCWgPQwjpnJ/iuERwQJSGlFKUaBVNNQFoFkdAkPqU5p8F6nV9lChoBmgJaA9DCIANiBDXbW5AlIaUUpRoFU1BAWgWR0CQ+qA3kxREdX2UKGgGaAloD0MI9kTXhR9Tb0CUhpRSlGgVTUEBaBZHQJD7QFxGUfR1fZQoaAZoCWgPQwjjcOZXc8lvQJSGlFKUaBVNEgFoFkdAkPwVxXGOuXV9lChoBmgJaA9DCOBL4UEz9WxAlIaUUpRoFU0JAWgWR0CQ/bhg3LmqdX2UKGgGaAloD0MIO4veqQC9cECUhpRSlGgVTTEBaBZHQJD96bDuSfV1fZQoaAZoCWgPQwgp0Cfy5CZxQJSGlFKUaBVNNAFoFkdAkP7mZVn27HV9lChoBmgJaA9DCCyAKQNHaHJAlIaUUpRoFU0yAWgWR0CQ/ucurZJ1dX2UKGgGaAloD0MIgVt389RAb0CUhpRSlGgVTQgBaBZHQJD/NV4oqkN1fZQoaAZoCWgPQwgmHHqLh7VwQJSGlFKUaBVNDgFoFkdAkP94wAU+LXV9lChoBmgJaA9DCIF7nj9t/HBAlIaUUpRoFU0YAWgWR0CQ/6iKiwjddX2UKGgGaAloD0MIMBAEyFC3cECUhpRSlGgVTT0BaBZHQJEAaGXXyy51fZQoaAZoCWgPQwiTizGwjg1zQJSGlFKUaBVNHwFoFkdAkQCsVDa4+nV9lChoBmgJaA9DCKSl8nYEr25AlIaUUpRoFU0sAWgWR0CRAQZ2ZApsdX2UKGgGaAloD0MI6zU9KCgCckCUhpRSlGgVTQQBaBZHQJEBOZ8a4tp1fZQoaAZoCWgPQwgWhV0UPTVwQJSGlFKUaBVNGgFoFkdAkQLOryUcGXV9lChoBmgJaA9DCNXnaiv28GtAlIaUUpRoFU0lAWgWR0CRAxLGrCFcdX2UKGgGaAloD0MIgzKNJldocECUhpRSlGgVTTIBaBZHQJEFAV+I/JN1fZQoaAZoCWgPQwh/+PnvQQtyQJSGlFKUaBVNYgFoFkdAkR1PhZQpF3V9lChoBmgJaA9DCHUiwVQzxm5AlIaUUpRoFU0xAWgWR0CRHX8IRh+fdX2UKGgGaAloD0MIPKJCdbNqckCUhpRSlGgVTRQBaBZHQJEedw3o9s91fZQoaAZoCWgPQwizs+idStpwQJSGlFKUaBVNRQFoFkdAkR6On2qT83V9lChoBmgJaA9DCAzIXu/+x29AlIaUUpRoFU0iAWgWR0CRHrPhhpg1dX2UKGgGaAloD0MIsK4K1GKya0CUhpRSlGgVTSwBaBZHQJEevOiWVu91fZQoaAZoCWgPQwhTeTvC6c1tQJSGlFKUaBVNIgFoFkdAkR8iVB2OhnV9lChoBmgJaA9DCBixTwDF9m9AlIaUUpRoFU0DAWgWR0CRHz9tdiUgdX2UKGgGaAloD0MID2Q9tTqjcECUhpRSlGgVTSABaBZHQJEfxWxQizN1fZQoaAZoCWgPQwgH7GryVPhyQJSGlFKUaBVNWgFoFkdAkSABbSqlxnV9lChoBmgJaA9DCHYb1H5rGnJAlIaUUpRoFU05AWgWR0CRIQsDW9UTdX2UKGgGaAloD0MIyOvBpHj3b0CUhpRSlGgVTVEBaBZHQJEh7Wvr4WV1fZQoaAZoCWgPQwh41QPmoYxvQJSGlFKUaBVNCwFoFkdAkSHrQokRjHV9lChoBmgJaA9DCEa28/1UJHBAlIaUUpRoFU0eAWgWR0CRIi32mHgxdX2UKGgGaAloD0MI5l31gPkYbkCUhpRSlGgVTTUBaBZHQJEkLu3MINV1fZQoaAZoCWgPQwgsgCkDR5JwQJSGlFKUaBVNDAFoFkdAkSWIXwb2lHV9lChoBmgJaA9DCFqdnKG4xnBAlIaUUpRoFU0QAWgWR0CRJcrMTviMdX2UKGgGaAloD0MIZ33KMVmEbkCUhpRSlGgVS/loFkdAkSalp9JBgXV9lChoBmgJaA9DCKUQyCUOXG9AlIaUUpRoFU0OAWgWR0CRJr2HLzPKdX2UKGgGaAloD0MIAvOQKd8lcECUhpRSlGgVTRQBaBZHQJEmveyiVSp1fZQoaAZoCWgPQwjH8UOlUeNwQJSGlFKUaBVNFwFoFkdAkScNfPX05HV9lChoBmgJaA9DCDtzDwnf429AlIaUUpRoFU0jAWgWR0CRJ8pe/pMYdX2UKGgGaAloD0MI41KVtjhxcUCUhpRSlGgVTTwBaBZHQJEoAddVvMt1fZQoaAZoCWgPQwiwO9154rZWQJSGlFKUaBVN6ANoFkdAkSiZsKsuF3V9lChoBmgJaA9DCJ6zBYRWf2tAlIaUUpRoFU1IAWgWR0CRKfEt/WlNdX2UKGgGaAloD0MIrYkFvuJeckCUhpRSlGgVTQ0BaBZHQJEqTK3d9Dx1fZQoaAZoCWgPQwgtX5fhfwZwQJSGlFKUaBVNMwFoFkdAkSp+AAhjfHV9lChoBmgJaA9DCKTGhJhLC25AlIaUUpRoFU0TAWgWR0CRKntdAxBWdX2UKGgGaAloD0MIRkHw+DbecUCUhpRSlGgVTYEBaBZHQJErP/YJ3Pl1fZQoaAZoCWgPQwirCaLuA5RMQJSGlFKUaBVL5WgWR0CRK1F1jiGWdX2UKGgGaAloD0MIs5lDUovOcECUhpRSlGgVTZkBaBZHQJEu0B2fTTh1fZQoaAZoCWgPQwg/An/4uQBxQJSGlFKUaBVNMwFoFkdAkS9QHmig03V9lChoBmgJaA9DCJOq7Sb4jXFAlIaUUpRoFU0jAWgWR0CRL6NSqEOBdX2UKGgGaAloD0MIzZAqihcGcECUhpRSlGgVTS8BaBZHQJEwJBHCoCN1fZQoaAZoCWgPQwjpZKn1fvZrQJSGlFKUaBVNBgFoFkdAkTAsotthu3V9lChoBmgJaA9DCKtZZ3xfYXFAlIaUUpRoFU0wAWgWR0CRMIJGOMl1dX2UKGgGaAloD0MI5DCYv4IAckCUhpRSlGgVTR4BaBZHQJEwwTWXkYJ1fZQoaAZoCWgPQwiKrDWU2gtwQJSGlFKUaBVNTwFoFkdAkTE0ulGgBnV9lChoBmgJaA9DCA3FHW/ym25AlIaUUpRoFU0aAWgWR0CRMrFrl/6PdX2UKGgGaAloD0MIJVmHo2sScUCUhpRSlGgVTRkBaBZHQJEzBlcyFf11fZQoaAZoCWgPQwiqYb8nllRxQJSGlFKUaBVNuQFoFkdAkTNUOI68x3V9lChoBmgJaA9DCPvMWZ9yf3JAlIaUUpRoFU1bAWgWR0CRM2eTV2A5dX2UKGgGaAloD0MIx2eyf15DcUCUhpRSlGgVTSIBaBZHQJEzgphF3IN1fZQoaAZoCWgPQwj5Eio4/FFxQJSGlFKUaBVNEwFoFkdAkTPgHVwxWXV9lChoBmgJaA9DCO2DLAsmUXFAlIaUUpRoFU05AWgWR0CRNAoM8YAKdX2UKGgGaAloD0MIXio25jX7cUCUhpRSlGgVTV8BaBZHQJE1/oKUmlZ1fZQoaAZoCWgPQwgMzXUaKQtxQJSGlFKUaBVNFQFoFkdAkTfXbuc+aHV9lChoBmgJaA9DCErToGher3BAlIaUUpRoFU0QAWgWR0CRODEpiI+GdX2UKGgGaAloD0MIhJ7Nqk/HcECUhpRSlGgVTRsBaBZHQJE49ImPYFt1fZQoaAZoCWgPQwgpCYm0jVhyQJSGlFKUaBVNQQFoFkdAkTkPp+tr9HV9lChoBmgJaA9DCERssHCSqnFAlIaUUpRoFU0rAWgWR0CROSeGwiaBdX2UKGgGaAloD0MIVaLsLWXkcECUhpRSlGgVTSIBaBZHQJE5Zf/m1Y11fZQoaAZoCWgPQwhYrrfN1BZvQJSGlFKUaBVNeAFoFkdAkTo/vrnkk3V9lChoBmgJaA9DCGYUyy0t6W1AlIaUUpRoFU0TAWgWR0CROtm4iHIqdWUu"
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d283af24e0f26b7d3e17e5be34d5d4ad4d1768c3c5edba2ff51a6ff5640dbd86
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58b284a893624fc110fd370f67969a3b951f3a710ddad23e69673f368fcb0067
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (221 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 248.79315472014673, "std_reward": 14.316773136629129, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-24T01:07:04.164795"}
|