--- language: - zh - en license: apache-2.0 datasets: - Azure99/blossom-chat-v2 - Azure99/blossom-math-v3 - Azure99/blossom-wizard-v2 - Azure99/blossom-orca-v2 model-index: - name: blossom-v4-yi-34b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.81 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v4-yi-34b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.44 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v4-yi-34b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 74.34 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v4-yi-34b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.89 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v4-yi-34b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.4 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v4-yi-34b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 64.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Azure99/blossom-v4-yi-34b name: Open LLM Leaderboard --- # **BLOSSOM-v4-yi-34b** [💻Github](https://github.com/Azure99/BlossomLM) • [🚀Blossom Chat Demo](https://blossom-chat.com/) ### Introduction Blossom is a conversational large language model, fine-tuned on the Blossom Orca/Wizard/Chat/Math mixed dataset based on the Yi-34B pre-trained model. Blossom possesses robust general capabilities and context comprehension. Additionally, the high-quality Chinese and English datasets used for training have been made open source. Training was conducted in two stages. The first stage used 100K Wizard, 100K Orca, 20K Math single-turn instruction datasets, training for 1 epoch; the second stage used 50K Blossom chat multi-turn dialogue dataset, and 2% randomly sampled data from the first stage, training for 3 epochs. ### Inference Inference is performed in the form of dialogue continuation. Single-turn dialogue ``` A chat between a human and an artificial intelligence bot. The bot gives helpful, detailed, and polite answers to the human's questions. |Human|: hello |Bot|: ``` Multi-turn dialogue ``` A chat between a human and an artificial intelligence bot. The bot gives helpful, detailed, and polite answers to the human's questions. |Human|: hello |Bot|: Hello! How can I assist you today?<|endoftext|> |Human|: Generate a random number using python |Bot|: ``` Note: At the end of the Bot's output in the historical conversation, append a `<|endoftext|>`. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Azure99__blossom-v4-yi-34b) | Metric |Value| |---------------------------------|----:| |Avg. |71.67| |AI2 Reasoning Challenge (25-Shot)|66.81| |HellaSwag (10-Shot) |84.44| |MMLU (5-Shot) |74.34| |TruthfulQA (0-shot) |57.89| |Winogrande (5-shot) |82.40| |GSM8k (5-shot) |64.14|