Ayush2312 commited on
Commit
acc7224
1 Parent(s): 4186d6b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -201
README.md CHANGED
@@ -1,201 +1,86 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
 
1
+ Fine-tuned llama 2 7b with processed open orca dataset (Ayush2312/deduplicated_orca_post_processed):
2
+
3
+ data processing:
4
+
5
+ 1. Remove output token less than 100 tokens in reponse
6
+ 2. Do cosine similarity on examples with threshold 0.95
7
+ 3.
8
+ python codes for data processing:
9
+
10
+ step 1:
11
+ ```
12
+ from datasets import load_dataset, Dataset
13
+ from sklearn.feature_extraction.text import TfidfVectorizer
14
+ from sklearn.metrics.pairwise import cosine_similarity
15
+
16
+ # Load your dataset from Hugging Face
17
+ dataset = load_dataset("Ayush2312/orca-1m-gpt4", split='train[:7000]')
18
+
19
+ # Tokenize your text data
20
+ texts = dataset['system_prompt'] + dataset['question'] + dataset['response']
21
+
22
+ # Filter out instructions with less than 100 tokens in response
23
+ filtered_texts = []
24
+ for i, response in enumerate(dataset['response']):
25
+ if len(response.split()) >= 100:
26
+ filtered_texts.append({'system_prompt': dataset['system_prompt'][i],
27
+ 'question': dataset['question'][i],
28
+ 'response': response})
29
+
30
+ # TF-IDF Vectorization for deduplication
31
+ texts = [text['system_prompt'] + ' ' + text['question'] + ' ' + text['response'] for text in filtered_texts]
32
+ vectorizer = TfidfVectorizer()
33
+ tfidf_matrix = vectorizer.fit_transform(texts)
34
+
35
+ # Calculate cosine similarity for deduplication
36
+ cos_sim_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix)
37
+
38
+ # Deduplicate the data based on cosine similarity
39
+ deduplicated_indices = set()
40
+ for i in range(len(cos_sim_matrix)):
41
+ if i not in deduplicated_indices:
42
+ for j in range(i + 1, len(cos_sim_matrix)):
43
+ if cos_sim_matrix[i, j] > 0.95:
44
+ deduplicated_indices.add(j)
45
+
46
+ # Create a new dataset with the deduplicated data
47
+ deduplicated_texts = [filtered_texts[i] for i in range(len(filtered_texts)) if i not in deduplicated_indices]
48
+ deduplicated_texts_dict = {key: [item[key] for item in deduplicated_texts] for key in filtered_texts[0].keys()}
49
+ deduplicated_dataset = Dataset.from_dict(deduplicated_texts_dict)
50
+
51
+ # Publish the dataset on Hugging Face
52
+ deduplicated_dataset.push_to_hub("deduplicated_orca_processed")
53
+
54
+ ```
55
+
56
+ step 2:
57
+
58
+ ```
59
+ from datasets import Dataset, load_dataset
60
+
61
+ # Load your Hugging Face dataset
62
+ dataset = load_dataset("Ayush2312/deduplicated_orca_processed")['train'][:1000]
63
+ # Define the default instruction
64
+ default_instruction = "### Instruction: Below is a conversation between a human and an AI agent. Write a summary of the conversation."
65
+
66
+ # Define the function to format each example
67
+ def format_example(example):
68
+ input_text = "### Input:\n"
69
+ if "response" in example:
70
+ input_text += "\n".join([f" {example[role]}" for role in ["question"]])
71
+ else:
72
+ input_text += "\n".join([f" {example[role]}" for role in ["question"]])
73
+ response_text = example["response"] if "response" in example else ""
74
+ instruction = "### Instruction: " + example["system_prompt"]
75
+ if not example["system_prompt"].strip():
76
+ instruction = default_instruction # Fill empty or missing instruction with default
77
+ return {
78
+ "formatted_example": f"{instruction}\n\n{input_text}\n\n### Response:\n{response_text}"
79
+ }
80
+ # Convert the dictionary to a Dataset object
81
+ dataset = Dataset.from_dict(dataset)
82
+ # Apply the function to format each example
83
+ formatted_dataset = dataset.map(format_example)
84
+ # Upload the new dataset to Hugging Face
85
+ formatted_dataset.push_to_hub("deduplicated_orca_post_processed")
86
+ ```