File size: 1,231 Bytes
9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b 9120ea9 6e3a89b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: GeneZC/MiniChat-1.5-3B
model-index:
- name: MiniMedicXpert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MiniMedicXpert
This model is a fine-tuned version of [GeneZC/MiniChat-1.5-3B](https://huggingface.co/GeneZC/MiniChat-1.5-3B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.7.1
- Transformers 4.37.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0 |