File size: 1,231 Bytes
9120ea9
6e3a89b
9120ea9
6e3a89b
 
9120ea9
6e3a89b
 
 
9120ea9
 
6e3a89b
 
9120ea9
6e3a89b
9120ea9
6e3a89b
9120ea9
6e3a89b
9120ea9
6e3a89b
9120ea9
6e3a89b
9120ea9
6e3a89b
9120ea9
6e3a89b
9120ea9
6e3a89b
9120ea9
6e3a89b
9120ea9
6e3a89b
9120ea9
6e3a89b
 
 
 
 
 
 
 
 
 
 
 
9120ea9
6e3a89b
9120ea9
 
 
 
 
6e3a89b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: GeneZC/MiniChat-1.5-3B
model-index:
- name: MiniMedicXpert
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MiniMedicXpert

This model is a fine-tuned version of [GeneZC/MiniChat-1.5-3B](https://huggingface.co/GeneZC/MiniChat-1.5-3B) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- PEFT 0.7.1
- Transformers 4.37.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0