--- tags: - generated_from_trainer datasets: - common_voice_1_0 metrics: - wer model-index: - name: fineturning-without-pretraining-3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_1_0 type: common_voice_1_0 config: en split: validation args: en metrics: - name: Wer type: wer value: 1.231604810552179 --- # fineturning-without-pretraining-3 This model is a fine-tuned version of [](https://huggingface.co/) on the common_voice_1_0 dataset. It achieves the following results on the evaluation set: - Loss: 3.0417 - Wer: 1.2316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4746 | 4.27 | 500 | 2.6868 | 1.0 | | 2.5662 | 8.55 | 1000 | 2.4297 | 1.0371 | | 2.3434 | 12.82 | 1500 | 2.3182 | 1.1941 | | 2.134 | 17.09 | 2000 | 2.3792 | 1.1749 | | 1.8502 | 21.37 | 2500 | 2.6371 | 1.1072 | | 1.5697 | 25.64 | 3000 | 2.9421 | 1.1907 | | 1.3814 | 29.91 | 3500 | 3.0417 | 1.2316 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2