Areeb-02 commited on
Commit
6b303a9
β€’
1 Parent(s): 38bab76

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,952 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ - dot_accuracy@1
23
+ - dot_accuracy@3
24
+ - dot_accuracy@5
25
+ - dot_accuracy@10
26
+ - dot_precision@1
27
+ - dot_precision@3
28
+ - dot_precision@5
29
+ - dot_precision@10
30
+ - dot_recall@1
31
+ - dot_recall@3
32
+ - dot_recall@5
33
+ - dot_recall@10
34
+ - dot_ndcg@10
35
+ - dot_mrr@10
36
+ - dot_map@100
37
+ pipeline_tag: sentence-similarity
38
+ tags:
39
+ - sentence-transformers
40
+ - sentence-similarity
41
+ - feature-extraction
42
+ - generated_from_trainer
43
+ - dataset_size:1010
44
+ - loss:MultipleNegativesRankingLoss
45
+ widget:
46
+ - source_sentence: How does Prompt-RAG differ from traditional vector embedding-based
47
+ methodologies?
48
+ sentences:
49
+ - Prompt-RAG differs from traditional vector embedding-based methodologies by adopting
50
+ a more direct and flexible retrieval process based on natural language prompts,
51
+ eliminating the need for a vector database or an algorithm for indexing and selecting
52
+ vectors.
53
+ - By introducing a pre-aligned phrase prior to the standard SFT stage, LLMs are
54
+ guided to concentrate on the aligned knowledge, thereby unlocking their internal
55
+ alignment abilities and improving their performance.
56
+ - The accuracy of GPT 3.5 on 2500 overall TeleQnA questions related to 3GPP documents
57
+ is 60.1, while the accuracy of GPT 3.5 + Telco-RAG is 6.9 points higher.
58
+ - source_sentence: Explain the concept of in-context learning as described in the
59
+ paper 'An explanation of in-context learning as implicit Bayesian inference'.
60
+ sentences:
61
+ - The main theme of the paper is that language models can learn to perform many
62
+ tasks in a zero-shot setting, without any explicit supervision.
63
+ - In-context learning, as explained in the paper, is a process where a language
64
+ model uses the context provided in the input to make predictions or generate outputs
65
+ without explicit training on the specific task. The paper argues that this process
66
+ can be understood as an implicit form of Bayesian inference.
67
+ - The paper was presented in the 55th Annual Meeting of the Association for Computational
68
+ Linguistics.
69
+ - source_sentence: What is the purpose of the survey conducted by Huang et al. (2023)?
70
+ sentences:
71
+ - The purpose of the survey conducted by Huang et al. (2023) is to provide a comprehensive
72
+ overview of hallucination in large language models, including its principles,
73
+ taxonomy, challenges, and open questions.
74
+ - The study of Human and American Translation Learning contributes to language development
75
+ by understanding the cognitive processes involved in translating between languages,
76
+ which can lead to improved teaching methods and translation technology.
77
+ - Using profile data, triplet examples are constructed in the format of (π‘₯𝑖, π‘₯ π‘–βˆ’,
78
+ π‘₯ 𝑖+). The anchor example π‘₯𝑖 is constructed as the combination of the content
79
+ 𝑐𝑖 and the corresponding label 𝑙𝑖.
80
+ - source_sentence: Who is the first author of the paper and what is their last name?
81
+ sentences:
82
+ - The key findings are that Vul-RAG achieves the highest accuracy and pairwise accuracy
83
+ among all baselines, substantially outperforming the best baseline LLMAO. It also
84
+ achieves the best trade-off between recall and precision.
85
+ - The first author of the paper is Nandan Thakur. Their last name is Thakur.
86
+ - The paper was presented at the 2022 Conference on Empirical Methods in Natural
87
+ Language Processing (EMNLP).
88
+ - source_sentence: Compare the top-5 retrieval accuracy of BM25 + MQ and SERM + BF
89
+ for the NQ Dataset and HotpotQA.
90
+ sentences:
91
+ - For the NQ Dataset, SERM + BF has a top-5 retrieval accuracy of 88.22, which is
92
+ significantly higher than BM25 + MQ's accuracy of 25.19. For HotpotQA, SERM +
93
+ BF was not tested, but BM25 + MQ has a top-5 retrieval accuracy of 49.52.
94
+ - The paper was presented at the 17th Annual International ACM-SIGIR Conference
95
+ on Research and Development in Information Retrieval.
96
+ - The proof for Equation 5 progresses from Equation 20 to Equation 22 by applying
97
+ the transformation motivated by Xie et al. [2021] and introducing the term p(R,
98
+ x1:iβˆ’1|z) to the equation.
99
+ model-index:
100
+ - name: SentenceTransformer based on BAAI/bge-small-en
101
+ results:
102
+ - task:
103
+ type: information-retrieval
104
+ name: Information Retrieval
105
+ dataset:
106
+ name: Unknown
107
+ type: unknown
108
+ metrics:
109
+ - type: cosine_accuracy@1
110
+ value: 0.01782178217821782
111
+ name: Cosine Accuracy@1
112
+ - type: cosine_accuracy@3
113
+ value: 0.04356435643564356
114
+ name: Cosine Accuracy@3
115
+ - type: cosine_accuracy@5
116
+ value: 0.06534653465346535
117
+ name: Cosine Accuracy@5
118
+ - type: cosine_accuracy@10
119
+ value: 0.12475247524752475
120
+ name: Cosine Accuracy@10
121
+ - type: cosine_precision@1
122
+ value: 0.01782178217821782
123
+ name: Cosine Precision@1
124
+ - type: cosine_precision@3
125
+ value: 0.015841584158415842
126
+ name: Cosine Precision@3
127
+ - type: cosine_precision@5
128
+ value: 0.016039603960396043
129
+ name: Cosine Precision@5
130
+ - type: cosine_precision@10
131
+ value: 0.015841584158415842
132
+ name: Cosine Precision@10
133
+ - type: cosine_recall@1
134
+ value: 1.839902956558168e-05
135
+ name: Cosine Recall@1
136
+ - type: cosine_recall@3
137
+ value: 4.498766525563503e-05
138
+ name: Cosine Recall@3
139
+ - type: cosine_recall@5
140
+ value: 7.262670252004521e-05
141
+ name: Cosine Recall@5
142
+ - type: cosine_recall@10
143
+ value: 0.00015079859335392304
144
+ name: Cosine Recall@10
145
+ - type: cosine_ndcg@10
146
+ value: 0.016300874257683427
147
+ name: Cosine Ndcg@10
148
+ - type: cosine_mrr@10
149
+ value: 0.04234598459845988
150
+ name: Cosine Mrr@10
151
+ - type: cosine_map@100
152
+ value: 0.0018766020656866668
153
+ name: Cosine Map@100
154
+ - type: dot_accuracy@1
155
+ value: 0.01782178217821782
156
+ name: Dot Accuracy@1
157
+ - type: dot_accuracy@3
158
+ value: 0.04356435643564356
159
+ name: Dot Accuracy@3
160
+ - type: dot_accuracy@5
161
+ value: 0.06534653465346535
162
+ name: Dot Accuracy@5
163
+ - type: dot_accuracy@10
164
+ value: 0.12475247524752475
165
+ name: Dot Accuracy@10
166
+ - type: dot_precision@1
167
+ value: 0.01782178217821782
168
+ name: Dot Precision@1
169
+ - type: dot_precision@3
170
+ value: 0.015841584158415842
171
+ name: Dot Precision@3
172
+ - type: dot_precision@5
173
+ value: 0.016039603960396043
174
+ name: Dot Precision@5
175
+ - type: dot_precision@10
176
+ value: 0.015841584158415842
177
+ name: Dot Precision@10
178
+ - type: dot_recall@1
179
+ value: 1.839902956558168e-05
180
+ name: Dot Recall@1
181
+ - type: dot_recall@3
182
+ value: 4.498766525563503e-05
183
+ name: Dot Recall@3
184
+ - type: dot_recall@5
185
+ value: 7.262670252004521e-05
186
+ name: Dot Recall@5
187
+ - type: dot_recall@10
188
+ value: 0.00015079859335392304
189
+ name: Dot Recall@10
190
+ - type: dot_ndcg@10
191
+ value: 0.016300874257683427
192
+ name: Dot Ndcg@10
193
+ - type: dot_mrr@10
194
+ value: 0.04234598459845988
195
+ name: Dot Mrr@10
196
+ - type: dot_map@100
197
+ value: 0.0018766020656866668
198
+ name: Dot Map@100
199
+ - type: cosine_accuracy@1
200
+ value: 0.019801980198019802
201
+ name: Cosine Accuracy@1
202
+ - type: cosine_accuracy@3
203
+ value: 0.040594059405940595
204
+ name: Cosine Accuracy@3
205
+ - type: cosine_accuracy@5
206
+ value: 0.06534653465346535
207
+ name: Cosine Accuracy@5
208
+ - type: cosine_accuracy@10
209
+ value: 0.12673267326732673
210
+ name: Cosine Accuracy@10
211
+ - type: cosine_precision@1
212
+ value: 0.019801980198019802
213
+ name: Cosine Precision@1
214
+ - type: cosine_precision@3
215
+ value: 0.01485148514851485
216
+ name: Cosine Precision@3
217
+ - type: cosine_precision@5
218
+ value: 0.014851485148514853
219
+ name: Cosine Precision@5
220
+ - type: cosine_precision@10
221
+ value: 0.016831683168316833
222
+ name: Cosine Precision@10
223
+ - type: cosine_recall@1
224
+ value: 1.9670857914229207e-05
225
+ name: Cosine Recall@1
226
+ - type: cosine_recall@3
227
+ value: 3.554268094376118e-05
228
+ name: Cosine Recall@3
229
+ - type: cosine_recall@5
230
+ value: 6.67664165823309e-05
231
+ name: Cosine Recall@5
232
+ - type: cosine_recall@10
233
+ value: 0.0001670844654494185
234
+ name: Cosine Recall@10
235
+ - type: cosine_ndcg@10
236
+ value: 0.01679069935920913
237
+ name: Cosine Ndcg@10
238
+ - type: cosine_mrr@10
239
+ value: 0.04252396668238257
240
+ name: Cosine Mrr@10
241
+ - type: cosine_map@100
242
+ value: 0.002057887757857092
243
+ name: Cosine Map@100
244
+ - type: dot_accuracy@1
245
+ value: 0.019801980198019802
246
+ name: Dot Accuracy@1
247
+ - type: dot_accuracy@3
248
+ value: 0.040594059405940595
249
+ name: Dot Accuracy@3
250
+ - type: dot_accuracy@5
251
+ value: 0.06534653465346535
252
+ name: Dot Accuracy@5
253
+ - type: dot_accuracy@10
254
+ value: 0.12673267326732673
255
+ name: Dot Accuracy@10
256
+ - type: dot_precision@1
257
+ value: 0.019801980198019802
258
+ name: Dot Precision@1
259
+ - type: dot_precision@3
260
+ value: 0.01485148514851485
261
+ name: Dot Precision@3
262
+ - type: dot_precision@5
263
+ value: 0.014851485148514853
264
+ name: Dot Precision@5
265
+ - type: dot_precision@10
266
+ value: 0.016831683168316833
267
+ name: Dot Precision@10
268
+ - type: dot_recall@1
269
+ value: 1.9670857914229207e-05
270
+ name: Dot Recall@1
271
+ - type: dot_recall@3
272
+ value: 3.554268094376118e-05
273
+ name: Dot Recall@3
274
+ - type: dot_recall@5
275
+ value: 6.67664165823309e-05
276
+ name: Dot Recall@5
277
+ - type: dot_recall@10
278
+ value: 0.0001670844654494185
279
+ name: Dot Recall@10
280
+ - type: dot_ndcg@10
281
+ value: 0.01679069935920913
282
+ name: Dot Ndcg@10
283
+ - type: dot_mrr@10
284
+ value: 0.04252396668238257
285
+ name: Dot Mrr@10
286
+ - type: dot_map@100
287
+ value: 0.002057887757857092
288
+ name: Dot Map@100
289
+ - type: cosine_accuracy@1
290
+ value: 0.01881188118811881
291
+ name: Cosine Accuracy@1
292
+ - type: cosine_accuracy@3
293
+ value: 0.03762376237623762
294
+ name: Cosine Accuracy@3
295
+ - type: cosine_accuracy@5
296
+ value: 0.06435643564356436
297
+ name: Cosine Accuracy@5
298
+ - type: cosine_accuracy@10
299
+ value: 0.1306930693069307
300
+ name: Cosine Accuracy@10
301
+ - type: cosine_precision@1
302
+ value: 0.01881188118811881
303
+ name: Cosine Precision@1
304
+ - type: cosine_precision@3
305
+ value: 0.013861386138613862
306
+ name: Cosine Precision@3
307
+ - type: cosine_precision@5
308
+ value: 0.015841584158415842
309
+ name: Cosine Precision@5
310
+ - type: cosine_precision@10
311
+ value: 0.01722772277227723
312
+ name: Cosine Precision@10
313
+ - type: cosine_recall@1
314
+ value: 1.8836739119030395e-05
315
+ name: Cosine Recall@1
316
+ - type: cosine_recall@3
317
+ value: 3.852282962664283e-05
318
+ name: Cosine Recall@3
319
+ - type: cosine_recall@5
320
+ value: 7.907232140954174e-05
321
+ name: Cosine Recall@5
322
+ - type: cosine_recall@10
323
+ value: 0.00018073758516299118
324
+ name: Cosine Recall@10
325
+ - type: cosine_ndcg@10
326
+ value: 0.01704492626324548
327
+ name: Cosine Ndcg@10
328
+ - type: cosine_mrr@10
329
+ value: 0.04188786735816444
330
+ name: Cosine Mrr@10
331
+ - type: cosine_map@100
332
+ value: 0.002251865468050825
333
+ name: Cosine Map@100
334
+ - type: dot_accuracy@1
335
+ value: 0.01881188118811881
336
+ name: Dot Accuracy@1
337
+ - type: dot_accuracy@3
338
+ value: 0.03762376237623762
339
+ name: Dot Accuracy@3
340
+ - type: dot_accuracy@5
341
+ value: 0.06435643564356436
342
+ name: Dot Accuracy@5
343
+ - type: dot_accuracy@10
344
+ value: 0.1306930693069307
345
+ name: Dot Accuracy@10
346
+ - type: dot_precision@1
347
+ value: 0.01881188118811881
348
+ name: Dot Precision@1
349
+ - type: dot_precision@3
350
+ value: 0.013861386138613862
351
+ name: Dot Precision@3
352
+ - type: dot_precision@5
353
+ value: 0.015841584158415842
354
+ name: Dot Precision@5
355
+ - type: dot_precision@10
356
+ value: 0.01722772277227723
357
+ name: Dot Precision@10
358
+ - type: dot_recall@1
359
+ value: 1.8836739119030395e-05
360
+ name: Dot Recall@1
361
+ - type: dot_recall@3
362
+ value: 3.852282962664283e-05
363
+ name: Dot Recall@3
364
+ - type: dot_recall@5
365
+ value: 7.907232140954174e-05
366
+ name: Dot Recall@5
367
+ - type: dot_recall@10
368
+ value: 0.00018073758516299118
369
+ name: Dot Recall@10
370
+ - type: dot_ndcg@10
371
+ value: 0.01704492626324548
372
+ name: Dot Ndcg@10
373
+ - type: dot_mrr@10
374
+ value: 0.04188786735816444
375
+ name: Dot Mrr@10
376
+ - type: dot_map@100
377
+ value: 0.002251865468050825
378
+ name: Dot Map@100
379
+ - type: cosine_accuracy@1
380
+ value: 0.01881188118811881
381
+ name: Cosine Accuracy@1
382
+ - type: cosine_accuracy@3
383
+ value: 0.03663366336633663
384
+ name: Cosine Accuracy@3
385
+ - type: cosine_accuracy@5
386
+ value: 0.06435643564356436
387
+ name: Cosine Accuracy@5
388
+ - type: cosine_accuracy@10
389
+ value: 0.1306930693069307
390
+ name: Cosine Accuracy@10
391
+ - type: cosine_precision@1
392
+ value: 0.01881188118811881
393
+ name: Cosine Precision@1
394
+ - type: cosine_precision@3
395
+ value: 0.013531353135313529
396
+ name: Cosine Precision@3
397
+ - type: cosine_precision@5
398
+ value: 0.015643564356435644
399
+ name: Cosine Precision@5
400
+ - type: cosine_precision@10
401
+ value: 0.01722772277227723
402
+ name: Cosine Precision@10
403
+ - type: cosine_recall@1
404
+ value: 1.8836739119030395e-05
405
+ name: Cosine Recall@1
406
+ - type: cosine_recall@3
407
+ value: 3.715905688573237e-05
408
+ name: Cosine Recall@3
409
+ - type: cosine_recall@5
410
+ value: 7.929088142504806e-05
411
+ name: Cosine Recall@5
412
+ - type: cosine_recall@10
413
+ value: 0.0001757722267344924
414
+ name: Cosine Recall@10
415
+ - type: cosine_ndcg@10
416
+ value: 0.01701867523723249
417
+ name: Cosine Ndcg@10
418
+ - type: cosine_mrr@10
419
+ value: 0.0418477919220494
420
+ name: Cosine Mrr@10
421
+ - type: cosine_map@100
422
+ value: 0.0022453604762727357
423
+ name: Cosine Map@100
424
+ - type: dot_accuracy@1
425
+ value: 0.01881188118811881
426
+ name: Dot Accuracy@1
427
+ - type: dot_accuracy@3
428
+ value: 0.03663366336633663
429
+ name: Dot Accuracy@3
430
+ - type: dot_accuracy@5
431
+ value: 0.06435643564356436
432
+ name: Dot Accuracy@5
433
+ - type: dot_accuracy@10
434
+ value: 0.1306930693069307
435
+ name: Dot Accuracy@10
436
+ - type: dot_precision@1
437
+ value: 0.01881188118811881
438
+ name: Dot Precision@1
439
+ - type: dot_precision@3
440
+ value: 0.013531353135313529
441
+ name: Dot Precision@3
442
+ - type: dot_precision@5
443
+ value: 0.015643564356435644
444
+ name: Dot Precision@5
445
+ - type: dot_precision@10
446
+ value: 0.01722772277227723
447
+ name: Dot Precision@10
448
+ - type: dot_recall@1
449
+ value: 1.8836739119030395e-05
450
+ name: Dot Recall@1
451
+ - type: dot_recall@3
452
+ value: 3.715905688573237e-05
453
+ name: Dot Recall@3
454
+ - type: dot_recall@5
455
+ value: 7.929088142504806e-05
456
+ name: Dot Recall@5
457
+ - type: dot_recall@10
458
+ value: 0.0001757722267344924
459
+ name: Dot Recall@10
460
+ - type: dot_ndcg@10
461
+ value: 0.01701867523723249
462
+ name: Dot Ndcg@10
463
+ - type: dot_mrr@10
464
+ value: 0.0418477919220494
465
+ name: Dot Mrr@10
466
+ - type: dot_map@100
467
+ value: 0.0022453604762727357
468
+ name: Dot Map@100
469
+ ---
470
+
471
+ # SentenceTransformer based on BAAI/bge-small-en
472
+
473
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
474
+
475
+ ## Model Details
476
+
477
+ ### Model Description
478
+ - **Model Type:** Sentence Transformer
479
+ - **Base model:** [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) <!-- at revision 2275a7bdee235e9b4f01fa73aa60d3311983cfea -->
480
+ - **Maximum Sequence Length:** 512 tokens
481
+ - **Output Dimensionality:** 384 tokens
482
+ - **Similarity Function:** Cosine Similarity
483
+ <!-- - **Training Dataset:** Unknown -->
484
+ <!-- - **Language:** Unknown -->
485
+ <!-- - **License:** Unknown -->
486
+
487
+ ### Model Sources
488
+
489
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
490
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
491
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
492
+
493
+ ### Full Model Architecture
494
+
495
+ ```
496
+ SentenceTransformer(
497
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
498
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
499
+ (2): Normalize()
500
+ )
501
+ ```
502
+
503
+ ## Usage
504
+
505
+ ### Direct Usage (Sentence Transformers)
506
+
507
+ First install the Sentence Transformers library:
508
+
509
+ ```bash
510
+ pip install -U sentence-transformers
511
+ ```
512
+
513
+ Then you can load this model and run inference.
514
+ ```python
515
+ from sentence_transformers import SentenceTransformer
516
+
517
+ # Download from the πŸ€— Hub
518
+ model = SentenceTransformer("Areeb-02/bge-small-en-MultiplrRankingLoss-30-Rag-paper-dataset")
519
+ # Run inference
520
+ sentences = [
521
+ 'Compare the top-5 retrieval accuracy of BM25 + MQ and SERM + BF for the NQ Dataset and HotpotQA.',
522
+ "For the NQ Dataset, SERM + BF has a top-5 retrieval accuracy of 88.22, which is significantly higher than BM25 + MQ's accuracy of 25.19. For HotpotQA, SERM + BF was not tested, but BM25 + MQ has a top-5 retrieval accuracy of 49.52.",
523
+ 'The proof for Equation 5 progresses from Equation 20 to Equation 22 by applying the transformation motivated by Xie et al. [2021] and introducing the term p(R, x1:iβˆ’1|z) to the equation.',
524
+ ]
525
+ embeddings = model.encode(sentences)
526
+ print(embeddings.shape)
527
+ # [3, 384]
528
+
529
+ # Get the similarity scores for the embeddings
530
+ similarities = model.similarity(embeddings, embeddings)
531
+ print(similarities.shape)
532
+ # [3, 3]
533
+ ```
534
+
535
+ <!--
536
+ ### Direct Usage (Transformers)
537
+
538
+ <details><summary>Click to see the direct usage in Transformers</summary>
539
+
540
+ </details>
541
+ -->
542
+
543
+ <!--
544
+ ### Downstream Usage (Sentence Transformers)
545
+
546
+ You can finetune this model on your own dataset.
547
+
548
+ <details><summary>Click to expand</summary>
549
+
550
+ </details>
551
+ -->
552
+
553
+ <!--
554
+ ### Out-of-Scope Use
555
+
556
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
557
+ -->
558
+
559
+ ## Evaluation
560
+
561
+ ### Metrics
562
+
563
+ #### Information Retrieval
564
+
565
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
566
+
567
+ | Metric | Value |
568
+ |:--------------------|:-----------|
569
+ | cosine_accuracy@1 | 0.0178 |
570
+ | cosine_accuracy@3 | 0.0436 |
571
+ | cosine_accuracy@5 | 0.0653 |
572
+ | cosine_accuracy@10 | 0.1248 |
573
+ | cosine_precision@1 | 0.0178 |
574
+ | cosine_precision@3 | 0.0158 |
575
+ | cosine_precision@5 | 0.016 |
576
+ | cosine_precision@10 | 0.0158 |
577
+ | cosine_recall@1 | 0.0 |
578
+ | cosine_recall@3 | 0.0 |
579
+ | cosine_recall@5 | 0.0001 |
580
+ | cosine_recall@10 | 0.0002 |
581
+ | cosine_ndcg@10 | 0.0163 |
582
+ | cosine_mrr@10 | 0.0423 |
583
+ | **cosine_map@100** | **0.0019** |
584
+ | dot_accuracy@1 | 0.0178 |
585
+ | dot_accuracy@3 | 0.0436 |
586
+ | dot_accuracy@5 | 0.0653 |
587
+ | dot_accuracy@10 | 0.1248 |
588
+ | dot_precision@1 | 0.0178 |
589
+ | dot_precision@3 | 0.0158 |
590
+ | dot_precision@5 | 0.016 |
591
+ | dot_precision@10 | 0.0158 |
592
+ | dot_recall@1 | 0.0 |
593
+ | dot_recall@3 | 0.0 |
594
+ | dot_recall@5 | 0.0001 |
595
+ | dot_recall@10 | 0.0002 |
596
+ | dot_ndcg@10 | 0.0163 |
597
+ | dot_mrr@10 | 0.0423 |
598
+ | dot_map@100 | 0.0019 |
599
+
600
+ #### Information Retrieval
601
+
602
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
603
+
604
+ | Metric | Value |
605
+ |:--------------------|:-----------|
606
+ | cosine_accuracy@1 | 0.0198 |
607
+ | cosine_accuracy@3 | 0.0406 |
608
+ | cosine_accuracy@5 | 0.0653 |
609
+ | cosine_accuracy@10 | 0.1267 |
610
+ | cosine_precision@1 | 0.0198 |
611
+ | cosine_precision@3 | 0.0149 |
612
+ | cosine_precision@5 | 0.0149 |
613
+ | cosine_precision@10 | 0.0168 |
614
+ | cosine_recall@1 | 0.0 |
615
+ | cosine_recall@3 | 0.0 |
616
+ | cosine_recall@5 | 0.0001 |
617
+ | cosine_recall@10 | 0.0002 |
618
+ | cosine_ndcg@10 | 0.0168 |
619
+ | cosine_mrr@10 | 0.0425 |
620
+ | **cosine_map@100** | **0.0021** |
621
+ | dot_accuracy@1 | 0.0198 |
622
+ | dot_accuracy@3 | 0.0406 |
623
+ | dot_accuracy@5 | 0.0653 |
624
+ | dot_accuracy@10 | 0.1267 |
625
+ | dot_precision@1 | 0.0198 |
626
+ | dot_precision@3 | 0.0149 |
627
+ | dot_precision@5 | 0.0149 |
628
+ | dot_precision@10 | 0.0168 |
629
+ | dot_recall@1 | 0.0 |
630
+ | dot_recall@3 | 0.0 |
631
+ | dot_recall@5 | 0.0001 |
632
+ | dot_recall@10 | 0.0002 |
633
+ | dot_ndcg@10 | 0.0168 |
634
+ | dot_mrr@10 | 0.0425 |
635
+ | dot_map@100 | 0.0021 |
636
+
637
+ #### Information Retrieval
638
+
639
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
640
+
641
+ | Metric | Value |
642
+ |:--------------------|:-----------|
643
+ | cosine_accuracy@1 | 0.0188 |
644
+ | cosine_accuracy@3 | 0.0376 |
645
+ | cosine_accuracy@5 | 0.0644 |
646
+ | cosine_accuracy@10 | 0.1307 |
647
+ | cosine_precision@1 | 0.0188 |
648
+ | cosine_precision@3 | 0.0139 |
649
+ | cosine_precision@5 | 0.0158 |
650
+ | cosine_precision@10 | 0.0172 |
651
+ | cosine_recall@1 | 0.0 |
652
+ | cosine_recall@3 | 0.0 |
653
+ | cosine_recall@5 | 0.0001 |
654
+ | cosine_recall@10 | 0.0002 |
655
+ | cosine_ndcg@10 | 0.017 |
656
+ | cosine_mrr@10 | 0.0419 |
657
+ | **cosine_map@100** | **0.0023** |
658
+ | dot_accuracy@1 | 0.0188 |
659
+ | dot_accuracy@3 | 0.0376 |
660
+ | dot_accuracy@5 | 0.0644 |
661
+ | dot_accuracy@10 | 0.1307 |
662
+ | dot_precision@1 | 0.0188 |
663
+ | dot_precision@3 | 0.0139 |
664
+ | dot_precision@5 | 0.0158 |
665
+ | dot_precision@10 | 0.0172 |
666
+ | dot_recall@1 | 0.0 |
667
+ | dot_recall@3 | 0.0 |
668
+ | dot_recall@5 | 0.0001 |
669
+ | dot_recall@10 | 0.0002 |
670
+ | dot_ndcg@10 | 0.017 |
671
+ | dot_mrr@10 | 0.0419 |
672
+ | dot_map@100 | 0.0023 |
673
+
674
+ #### Information Retrieval
675
+
676
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
677
+
678
+ | Metric | Value |
679
+ |:--------------------|:-----------|
680
+ | cosine_accuracy@1 | 0.0188 |
681
+ | cosine_accuracy@3 | 0.0366 |
682
+ | cosine_accuracy@5 | 0.0644 |
683
+ | cosine_accuracy@10 | 0.1307 |
684
+ | cosine_precision@1 | 0.0188 |
685
+ | cosine_precision@3 | 0.0135 |
686
+ | cosine_precision@5 | 0.0156 |
687
+ | cosine_precision@10 | 0.0172 |
688
+ | cosine_recall@1 | 0.0 |
689
+ | cosine_recall@3 | 0.0 |
690
+ | cosine_recall@5 | 0.0001 |
691
+ | cosine_recall@10 | 0.0002 |
692
+ | cosine_ndcg@10 | 0.017 |
693
+ | cosine_mrr@10 | 0.0418 |
694
+ | **cosine_map@100** | **0.0022** |
695
+ | dot_accuracy@1 | 0.0188 |
696
+ | dot_accuracy@3 | 0.0366 |
697
+ | dot_accuracy@5 | 0.0644 |
698
+ | dot_accuracy@10 | 0.1307 |
699
+ | dot_precision@1 | 0.0188 |
700
+ | dot_precision@3 | 0.0135 |
701
+ | dot_precision@5 | 0.0156 |
702
+ | dot_precision@10 | 0.0172 |
703
+ | dot_recall@1 | 0.0 |
704
+ | dot_recall@3 | 0.0 |
705
+ | dot_recall@5 | 0.0001 |
706
+ | dot_recall@10 | 0.0002 |
707
+ | dot_ndcg@10 | 0.017 |
708
+ | dot_mrr@10 | 0.0418 |
709
+ | dot_map@100 | 0.0022 |
710
+
711
+ <!--
712
+ ## Bias, Risks and Limitations
713
+
714
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
715
+ -->
716
+
717
+ <!--
718
+ ### Recommendations
719
+
720
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
721
+ -->
722
+
723
+ ## Training Details
724
+
725
+ ### Training Dataset
726
+
727
+ #### Unnamed Dataset
728
+
729
+
730
+ * Size: 1,010 training samples
731
+ * Columns: <code>anchor</code> and <code>positive</code>
732
+ * Approximate statistics based on the first 1000 samples:
733
+ | | anchor | positive |
734
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
735
+ | type | string | string |
736
+ | details | <ul><li>min: 2 tokens</li><li>mean: 21.28 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 40.15 tokens</li><li>max: 129 tokens</li></ul> |
737
+ * Samples:
738
+ | anchor | positive |
739
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
740
+ | <code>What is the purpose of the MultiHop-RAG dataset and what does it consist of?</code> | <code>The MultiHop-RAG dataset is developed to benchmark Retrieval-Augmented Generation (RAG) for multi-hop queries. It consists of a knowledge base, a large collection of multi-hop queries, their ground-truth answers, and the associated supporting evidence. The dataset is built using an English news article dataset as the underlying RAG knowledge base.</code> |
741
+ | <code>Among Google, Apple, and Nvidia, which company reported the largest profit margins in their third-quarter reports for the fiscal year 2023?</code> | <code>Apple reported the largest profit margins in their third-quarter reports for the fiscal year 2023.</code> |
742
+ | <code>Under what circumstances should the LLM answer the questions?</code> | <code>The LLM should answer the questions based solely on the information provided in the paragraphs, and it should not use any other information.</code> |
743
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
744
+ ```json
745
+ {
746
+ "scale": 20.0,
747
+ "similarity_fct": "cos_sim"
748
+ }
749
+ ```
750
+
751
+ ### Training Hyperparameters
752
+ #### Non-Default Hyperparameters
753
+
754
+ - `eval_strategy`: steps
755
+ - `per_device_train_batch_size`: 16
756
+ - `per_device_eval_batch_size`: 16
757
+ - `num_train_epochs`: 10
758
+ - `warmup_ratio`: 0.1
759
+ - `fp16`: True
760
+
761
+ #### All Hyperparameters
762
+ <details><summary>Click to expand</summary>
763
+
764
+ - `overwrite_output_dir`: False
765
+ - `do_predict`: False
766
+ - `eval_strategy`: steps
767
+ - `prediction_loss_only`: True
768
+ - `per_device_train_batch_size`: 16
769
+ - `per_device_eval_batch_size`: 16
770
+ - `per_gpu_train_batch_size`: None
771
+ - `per_gpu_eval_batch_size`: None
772
+ - `gradient_accumulation_steps`: 1
773
+ - `eval_accumulation_steps`: None
774
+ - `learning_rate`: 5e-05
775
+ - `weight_decay`: 0.0
776
+ - `adam_beta1`: 0.9
777
+ - `adam_beta2`: 0.999
778
+ - `adam_epsilon`: 1e-08
779
+ - `max_grad_norm`: 1.0
780
+ - `num_train_epochs`: 10
781
+ - `max_steps`: -1
782
+ - `lr_scheduler_type`: linear
783
+ - `lr_scheduler_kwargs`: {}
784
+ - `warmup_ratio`: 0.1
785
+ - `warmup_steps`: 0
786
+ - `log_level`: passive
787
+ - `log_level_replica`: warning
788
+ - `log_on_each_node`: True
789
+ - `logging_nan_inf_filter`: True
790
+ - `save_safetensors`: True
791
+ - `save_on_each_node`: False
792
+ - `save_only_model`: False
793
+ - `restore_callback_states_from_checkpoint`: False
794
+ - `no_cuda`: False
795
+ - `use_cpu`: False
796
+ - `use_mps_device`: False
797
+ - `seed`: 42
798
+ - `data_seed`: None
799
+ - `jit_mode_eval`: False
800
+ - `use_ipex`: False
801
+ - `bf16`: False
802
+ - `fp16`: True
803
+ - `fp16_opt_level`: O1
804
+ - `half_precision_backend`: auto
805
+ - `bf16_full_eval`: False
806
+ - `fp16_full_eval`: False
807
+ - `tf32`: None
808
+ - `local_rank`: 0
809
+ - `ddp_backend`: None
810
+ - `tpu_num_cores`: None
811
+ - `tpu_metrics_debug`: False
812
+ - `debug`: []
813
+ - `dataloader_drop_last`: False
814
+ - `dataloader_num_workers`: 0
815
+ - `dataloader_prefetch_factor`: None
816
+ - `past_index`: -1
817
+ - `disable_tqdm`: False
818
+ - `remove_unused_columns`: True
819
+ - `label_names`: None
820
+ - `load_best_model_at_end`: False
821
+ - `ignore_data_skip`: False
822
+ - `fsdp`: []
823
+ - `fsdp_min_num_params`: 0
824
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
825
+ - `fsdp_transformer_layer_cls_to_wrap`: None
826
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
827
+ - `deepspeed`: None
828
+ - `label_smoothing_factor`: 0.0
829
+ - `optim`: adamw_torch
830
+ - `optim_args`: None
831
+ - `adafactor`: False
832
+ - `group_by_length`: False
833
+ - `length_column_name`: length
834
+ - `ddp_find_unused_parameters`: None
835
+ - `ddp_bucket_cap_mb`: None
836
+ - `ddp_broadcast_buffers`: False
837
+ - `dataloader_pin_memory`: True
838
+ - `dataloader_persistent_workers`: False
839
+ - `skip_memory_metrics`: True
840
+ - `use_legacy_prediction_loop`: False
841
+ - `push_to_hub`: False
842
+ - `resume_from_checkpoint`: None
843
+ - `hub_model_id`: None
844
+ - `hub_strategy`: every_save
845
+ - `hub_private_repo`: False
846
+ - `hub_always_push`: False
847
+ - `gradient_checkpointing`: False
848
+ - `gradient_checkpointing_kwargs`: None
849
+ - `include_inputs_for_metrics`: False
850
+ - `eval_do_concat_batches`: True
851
+ - `fp16_backend`: auto
852
+ - `push_to_hub_model_id`: None
853
+ - `push_to_hub_organization`: None
854
+ - `mp_parameters`:
855
+ - `auto_find_batch_size`: False
856
+ - `full_determinism`: False
857
+ - `torchdynamo`: None
858
+ - `ray_scope`: last
859
+ - `ddp_timeout`: 1800
860
+ - `torch_compile`: False
861
+ - `torch_compile_backend`: None
862
+ - `torch_compile_mode`: None
863
+ - `dispatch_batches`: None
864
+ - `split_batches`: None
865
+ - `include_tokens_per_second`: False
866
+ - `include_num_input_tokens_seen`: False
867
+ - `neftune_noise_alpha`: None
868
+ - `optim_target_modules`: None
869
+ - `batch_eval_metrics`: False
870
+ - `eval_on_start`: False
871
+ - `batch_sampler`: batch_sampler
872
+ - `multi_dataset_batch_sampler`: proportional
873
+
874
+ </details>
875
+
876
+ ### Training Logs
877
+ | Epoch | Step | Training Loss | cosine_map@100 |
878
+ |:------:|:----:|:-------------:|:--------------:|
879
+ | 0 | 0 | - | 0.0018 |
880
+ | 1.5625 | 100 | - | 0.0019 |
881
+ | 3.0 | 192 | - | 0.0020 |
882
+ | 1.5625 | 100 | - | 0.0021 |
883
+ | 3.125 | 200 | - | 0.0020 |
884
+ | 4.6875 | 300 | - | 0.0021 |
885
+ | 5.0 | 320 | - | 0.0020 |
886
+ | 1.5625 | 100 | - | 0.0020 |
887
+ | 3.125 | 200 | - | 0.0021 |
888
+ | 4.6875 | 300 | - | 0.0022 |
889
+ | 1.5625 | 100 | - | 0.0021 |
890
+ | 3.125 | 200 | - | 0.0019 |
891
+ | 4.6875 | 300 | - | 0.0022 |
892
+ | 6.25 | 400 | - | 0.0022 |
893
+ | 7.8125 | 500 | 0.0021 | 0.0022 |
894
+ | 9.375 | 600 | - | 0.0023 |
895
+ | 10.0 | 640 | - | 0.0022 |
896
+
897
+
898
+ ### Framework Versions
899
+ - Python: 3.10.12
900
+ - Sentence Transformers: 3.0.1
901
+ - Transformers: 4.42.3
902
+ - PyTorch: 2.3.0+cu121
903
+ - Accelerate: 0.32.1
904
+ - Datasets: 2.20.0
905
+ - Tokenizers: 0.19.1
906
+
907
+ ## Citation
908
+
909
+ ### BibTeX
910
+
911
+ #### Sentence Transformers
912
+ ```bibtex
913
+ @inproceedings{reimers-2019-sentence-bert,
914
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
915
+ author = "Reimers, Nils and Gurevych, Iryna",
916
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
917
+ month = "11",
918
+ year = "2019",
919
+ publisher = "Association for Computational Linguistics",
920
+ url = "https://arxiv.org/abs/1908.10084",
921
+ }
922
+ ```
923
+
924
+ #### MultipleNegativesRankingLoss
925
+ ```bibtex
926
+ @misc{henderson2017efficient,
927
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
928
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
929
+ year={2017},
930
+ eprint={1705.00652},
931
+ archivePrefix={arXiv},
932
+ primaryClass={cs.CL}
933
+ }
934
+ ```
935
+
936
+ <!--
937
+ ## Glossary
938
+
939
+ *Clearly define terms in order to be accessible across audiences.*
940
+ -->
941
+
942
+ <!--
943
+ ## Model Card Authors
944
+
945
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
946
+ -->
947
+
948
+ <!--
949
+ ## Model Card Contact
950
+
951
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
952
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.42.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.3",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0461d946f0d099914e8a1b448d79b5d56d531e168a42abe8051915c7f2d986fd
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff