Update README.md
Browse files
README.md
CHANGED
@@ -10,14 +10,15 @@ This model was trained on slightly adapted code from [run_t5_mlm_flax.py](https:
|
|
10 |
If you want to know about training details or evaluation results, see [SlovakT5_report.pdf](https://huggingface.co/ApoTro/slovak-t5-small/resolve/main/SlovakT5_report.pdf). For evaluation, you can also run [SlovakT5_eval.ipynb](https://colab.research.google.com/github/richardcepka/notebooks/blob/main/SlovakT5_eval.ipynb).
|
11 |
|
12 |
### How to use
|
|
|
13 |
```python
|
14 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
15 |
|
16 |
tokenizer = AutoTokenizer.from_pretrained("ApoTro/slovak-t5-small")
|
17 |
model = T5ForConditionalGeneration.from_pretrained("ApoTro/slovak-t5-small")
|
18 |
|
19 |
-
input_ids = tokenizer("
|
20 |
-
labels = tokenizer("
|
21 |
|
22 |
# the forward function automatically creates the correct decoder_input_ids
|
23 |
loss = model(input_ids=input_ids, labels=labels).loss
|
|
|
10 |
If you want to know about training details or evaluation results, see [SlovakT5_report.pdf](https://huggingface.co/ApoTro/slovak-t5-small/resolve/main/SlovakT5_report.pdf). For evaluation, you can also run [SlovakT5_eval.ipynb](https://colab.research.google.com/github/richardcepka/notebooks/blob/main/SlovakT5_eval.ipynb).
|
11 |
|
12 |
### How to use
|
13 |
+
E.g., SlovakT5-small can be fine-tuned for the NER task.
|
14 |
```python
|
15 |
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
16 |
|
17 |
tokenizer = AutoTokenizer.from_pretrained("ApoTro/slovak-t5-small")
|
18 |
model = T5ForConditionalGeneration.from_pretrained("ApoTro/slovak-t5-small")
|
19 |
|
20 |
+
input_ids = tokenizer("ner veta: Do druhého kola postúpili Robert Fico a Andrej Kiska s rozdielom 4,0%.", return_tensors="pt").input_ids
|
21 |
+
labels = tokenizer("per: Robert Fico | per: Andrej Kiska", return_tensors="pt").input_ids
|
22 |
|
23 |
# the forward function automatically creates the correct decoder_input_ids
|
24 |
loss = model(input_ids=input_ids, labels=labels).loss
|