Upload import_utils.py
Browse files- import_utils.py +1583 -0
import_utils.py
ADDED
@@ -0,0 +1,1583 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
Import utilities: Utilities related to imports and our lazy inits.
|
16 |
+
"""
|
17 |
+
|
18 |
+
import importlib.metadata
|
19 |
+
import importlib.util
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
import shutil
|
23 |
+
import subprocess
|
24 |
+
import sys
|
25 |
+
import warnings
|
26 |
+
from collections import OrderedDict
|
27 |
+
from functools import lru_cache
|
28 |
+
from itertools import chain
|
29 |
+
from types import ModuleType
|
30 |
+
from typing import Any, Tuple, Union
|
31 |
+
|
32 |
+
from packaging import version
|
33 |
+
|
34 |
+
from transformers import logging
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
+
|
39 |
+
|
40 |
+
# TODO: This doesn't work for all packages (`bs4`, `faiss`, etc.) Talk to Sylvain to see how to do with it better.
|
41 |
+
def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
|
42 |
+
# Check if the package spec exists and grab its version to avoid importing a local directory
|
43 |
+
package_exists = importlib.util.find_spec(pkg_name) is not None
|
44 |
+
package_version = "N/A"
|
45 |
+
if package_exists:
|
46 |
+
try:
|
47 |
+
# Primary method to get the package version
|
48 |
+
package_version = importlib.metadata.version(pkg_name)
|
49 |
+
except importlib.metadata.PackageNotFoundError:
|
50 |
+
# Fallback method: Only for "torch" and versions containing "dev"
|
51 |
+
if pkg_name == "torch":
|
52 |
+
try:
|
53 |
+
package = importlib.import_module(pkg_name)
|
54 |
+
temp_version = getattr(package, "__version__", "N/A")
|
55 |
+
# Check if the version contains "dev"
|
56 |
+
if "dev" in temp_version:
|
57 |
+
package_version = temp_version
|
58 |
+
package_exists = True
|
59 |
+
else:
|
60 |
+
package_exists = False
|
61 |
+
except ImportError:
|
62 |
+
# If the package can't be imported, it's not available
|
63 |
+
package_exists = False
|
64 |
+
else:
|
65 |
+
# For packages other than "torch", don't attempt the fallback and set as not available
|
66 |
+
package_exists = False
|
67 |
+
logger.debug(f"Detected {pkg_name} version: {package_version}")
|
68 |
+
if return_version:
|
69 |
+
return package_exists, package_version
|
70 |
+
else:
|
71 |
+
return package_exists
|
72 |
+
|
73 |
+
|
74 |
+
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
|
75 |
+
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
|
76 |
+
|
77 |
+
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
|
78 |
+
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
|
79 |
+
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()
|
80 |
+
|
81 |
+
# Try to run a native pytorch job in an environment with TorchXLA installed by setting this value to 0.
|
82 |
+
USE_TORCH_XLA = os.environ.get("USE_TORCH_XLA", "1").upper()
|
83 |
+
|
84 |
+
FORCE_TF_AVAILABLE = os.environ.get("FORCE_TF_AVAILABLE", "AUTO").upper()
|
85 |
+
|
86 |
+
# `transformers` requires `torch>=1.11` but this variable is exposed publicly, and we can't simply remove it.
|
87 |
+
# This is the version of torch required to run torch.fx features and torch.onnx with dictionary inputs.
|
88 |
+
TORCH_FX_REQUIRED_VERSION = version.parse("1.10")
|
89 |
+
|
90 |
+
ACCELERATE_MIN_VERSION = "0.21.0"
|
91 |
+
FSDP_MIN_VERSION = "1.12.0"
|
92 |
+
XLA_FSDPV2_MIN_VERSION = "2.2.0"
|
93 |
+
|
94 |
+
|
95 |
+
_accelerate_available, _accelerate_version = _is_package_available("accelerate", return_version=True)
|
96 |
+
_apex_available = _is_package_available("apex")
|
97 |
+
_aqlm_available = _is_package_available("aqlm")
|
98 |
+
_av_available = importlib.util.find_spec("av") is not None
|
99 |
+
_bitsandbytes_available = _is_package_available("bitsandbytes")
|
100 |
+
_eetq_available = _is_package_available("eetq")
|
101 |
+
_galore_torch_available = _is_package_available("galore_torch")
|
102 |
+
_lomo_available = _is_package_available("lomo_optim")
|
103 |
+
# `importlib.metadata.version` doesn't work with `bs4` but `beautifulsoup4`. For `importlib.util.find_spec`, reversed.
|
104 |
+
_bs4_available = importlib.util.find_spec("bs4") is not None
|
105 |
+
_coloredlogs_available = _is_package_available("coloredlogs")
|
106 |
+
# `importlib.metadata.util` doesn't work with `opencv-python-headless`.
|
107 |
+
_cv2_available = importlib.util.find_spec("cv2") is not None
|
108 |
+
_datasets_available = _is_package_available("datasets")
|
109 |
+
_decord_available = importlib.util.find_spec("decord") is not None
|
110 |
+
_detectron2_available = _is_package_available("detectron2")
|
111 |
+
# We need to check both `faiss` and `faiss-cpu`.
|
112 |
+
_faiss_available = importlib.util.find_spec("faiss") is not None
|
113 |
+
try:
|
114 |
+
_faiss_version = importlib.metadata.version("faiss")
|
115 |
+
logger.debug(f"Successfully imported faiss version {_faiss_version}")
|
116 |
+
except importlib.metadata.PackageNotFoundError:
|
117 |
+
try:
|
118 |
+
_faiss_version = importlib.metadata.version("faiss-cpu")
|
119 |
+
logger.debug(f"Successfully imported faiss version {_faiss_version}")
|
120 |
+
except importlib.metadata.PackageNotFoundError:
|
121 |
+
_faiss_available = False
|
122 |
+
_ftfy_available = _is_package_available("ftfy")
|
123 |
+
_g2p_en_available = _is_package_available("g2p_en")
|
124 |
+
_ipex_available, _ipex_version = _is_package_available("intel_extension_for_pytorch", return_version=True)
|
125 |
+
_jieba_available = _is_package_available("jieba")
|
126 |
+
_jinja_available = _is_package_available("jinja2")
|
127 |
+
_kenlm_available = _is_package_available("kenlm")
|
128 |
+
_keras_nlp_available = _is_package_available("keras_nlp")
|
129 |
+
_levenshtein_available = _is_package_available("Levenshtein")
|
130 |
+
_librosa_available = _is_package_available("librosa")
|
131 |
+
_natten_available = _is_package_available("natten")
|
132 |
+
_nltk_available = _is_package_available("nltk")
|
133 |
+
_onnx_available = _is_package_available("onnx")
|
134 |
+
_openai_available = _is_package_available("openai")
|
135 |
+
_optimum_available = _is_package_available("optimum")
|
136 |
+
_auto_gptq_available = _is_package_available("auto_gptq")
|
137 |
+
# `importlib.metadata.version` doesn't work with `awq`
|
138 |
+
_auto_awq_available = importlib.util.find_spec("awq") is not None
|
139 |
+
_quanto_available = _is_package_available("quanto")
|
140 |
+
_pandas_available = _is_package_available("pandas")
|
141 |
+
_peft_available = _is_package_available("peft")
|
142 |
+
_phonemizer_available = _is_package_available("phonemizer")
|
143 |
+
_psutil_available = _is_package_available("psutil")
|
144 |
+
_py3nvml_available = _is_package_available("py3nvml")
|
145 |
+
_pyctcdecode_available = _is_package_available("pyctcdecode")
|
146 |
+
_pygments_available = _is_package_available("pygments")
|
147 |
+
_pytesseract_available = _is_package_available("pytesseract")
|
148 |
+
_pytest_available = _is_package_available("pytest")
|
149 |
+
_pytorch_quantization_available = _is_package_available("pytorch_quantization")
|
150 |
+
_rjieba_available = _is_package_available("rjieba")
|
151 |
+
_sacremoses_available = _is_package_available("sacremoses")
|
152 |
+
_safetensors_available = _is_package_available("safetensors")
|
153 |
+
_scipy_available = _is_package_available("scipy")
|
154 |
+
_sentencepiece_available = _is_package_available("sentencepiece")
|
155 |
+
_is_seqio_available = _is_package_available("seqio")
|
156 |
+
_is_gguf_available = _is_package_available("gguf")
|
157 |
+
_sklearn_available = importlib.util.find_spec("sklearn") is not None
|
158 |
+
if _sklearn_available:
|
159 |
+
try:
|
160 |
+
importlib.metadata.version("scikit-learn")
|
161 |
+
except importlib.metadata.PackageNotFoundError:
|
162 |
+
_sklearn_available = False
|
163 |
+
_smdistributed_available = importlib.util.find_spec("smdistributed") is not None
|
164 |
+
_soundfile_available = _is_package_available("soundfile")
|
165 |
+
_spacy_available = _is_package_available("spacy")
|
166 |
+
_sudachipy_available, _sudachipy_version = _is_package_available("sudachipy", return_version=True)
|
167 |
+
_tensorflow_probability_available = _is_package_available("tensorflow_probability")
|
168 |
+
_tensorflow_text_available = _is_package_available("tensorflow_text")
|
169 |
+
_tf2onnx_available = _is_package_available("tf2onnx")
|
170 |
+
_timm_available = _is_package_available("timm")
|
171 |
+
_tokenizers_available = _is_package_available("tokenizers")
|
172 |
+
_torchaudio_available = _is_package_available("torchaudio")
|
173 |
+
_torchdistx_available = _is_package_available("torchdistx")
|
174 |
+
_torchvision_available = _is_package_available("torchvision")
|
175 |
+
_mlx_available = _is_package_available("mlx")
|
176 |
+
_hqq_available = _is_package_available("hqq")
|
177 |
+
|
178 |
+
|
179 |
+
_torch_version = "N/A"
|
180 |
+
_torch_available = False
|
181 |
+
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
|
182 |
+
_torch_available, _torch_version = _is_package_available("torch", return_version=True)
|
183 |
+
else:
|
184 |
+
logger.info("Disabling PyTorch because USE_TF is set")
|
185 |
+
_torch_available = False
|
186 |
+
|
187 |
+
|
188 |
+
_tf_version = "N/A"
|
189 |
+
_tf_available = False
|
190 |
+
if FORCE_TF_AVAILABLE in ENV_VARS_TRUE_VALUES:
|
191 |
+
_tf_available = True
|
192 |
+
else:
|
193 |
+
if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
|
194 |
+
# Note: _is_package_available("tensorflow") fails for tensorflow-cpu. Please test any changes to the line below
|
195 |
+
# with tensorflow-cpu to make sure it still works!
|
196 |
+
_tf_available = importlib.util.find_spec("tensorflow") is not None
|
197 |
+
if _tf_available:
|
198 |
+
candidates = (
|
199 |
+
"tensorflow",
|
200 |
+
"tensorflow-cpu",
|
201 |
+
"tensorflow-gpu",
|
202 |
+
"tf-nightly",
|
203 |
+
"tf-nightly-cpu",
|
204 |
+
"tf-nightly-gpu",
|
205 |
+
"tf-nightly-rocm",
|
206 |
+
"intel-tensorflow",
|
207 |
+
"intel-tensorflow-avx512",
|
208 |
+
"tensorflow-rocm",
|
209 |
+
"tensorflow-macos",
|
210 |
+
"tensorflow-aarch64",
|
211 |
+
)
|
212 |
+
_tf_version = None
|
213 |
+
# For the metadata, we have to look for both tensorflow and tensorflow-cpu
|
214 |
+
for pkg in candidates:
|
215 |
+
try:
|
216 |
+
_tf_version = importlib.metadata.version(pkg)
|
217 |
+
break
|
218 |
+
except importlib.metadata.PackageNotFoundError:
|
219 |
+
pass
|
220 |
+
_tf_available = _tf_version is not None
|
221 |
+
if _tf_available:
|
222 |
+
if version.parse(_tf_version) < version.parse("2"):
|
223 |
+
logger.info(
|
224 |
+
f"TensorFlow found but with version {_tf_version}. Transformers requires version 2 minimum."
|
225 |
+
)
|
226 |
+
_tf_available = False
|
227 |
+
else:
|
228 |
+
logger.info("Disabling Tensorflow because USE_TORCH is set")
|
229 |
+
|
230 |
+
|
231 |
+
_essentia_available = importlib.util.find_spec("essentia") is not None
|
232 |
+
try:
|
233 |
+
_essentia_version = importlib.metadata.version("essentia")
|
234 |
+
logger.debug(f"Successfully imported essentia version {_essentia_version}")
|
235 |
+
except importlib.metadata.PackageNotFoundError:
|
236 |
+
_essentia_version = False
|
237 |
+
|
238 |
+
|
239 |
+
_pretty_midi_available = importlib.util.find_spec("pretty_midi") is not None
|
240 |
+
try:
|
241 |
+
_pretty_midi_version = importlib.metadata.version("pretty_midi")
|
242 |
+
logger.debug(f"Successfully imported pretty_midi version {_pretty_midi_version}")
|
243 |
+
except importlib.metadata.PackageNotFoundError:
|
244 |
+
_pretty_midi_available = False
|
245 |
+
|
246 |
+
|
247 |
+
ccl_version = "N/A"
|
248 |
+
_is_ccl_available = (
|
249 |
+
importlib.util.find_spec("torch_ccl") is not None
|
250 |
+
or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
|
251 |
+
)
|
252 |
+
try:
|
253 |
+
ccl_version = importlib.metadata.version("oneccl_bind_pt")
|
254 |
+
logger.debug(f"Detected oneccl_bind_pt version {ccl_version}")
|
255 |
+
except importlib.metadata.PackageNotFoundError:
|
256 |
+
_is_ccl_available = False
|
257 |
+
|
258 |
+
|
259 |
+
_flax_available = False
|
260 |
+
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
|
261 |
+
_flax_available, _flax_version = _is_package_available("flax", return_version=True)
|
262 |
+
if _flax_available:
|
263 |
+
_jax_available, _jax_version = _is_package_available("jax", return_version=True)
|
264 |
+
if _jax_available:
|
265 |
+
logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
|
266 |
+
else:
|
267 |
+
_flax_available = _jax_available = False
|
268 |
+
_jax_version = _flax_version = "N/A"
|
269 |
+
|
270 |
+
|
271 |
+
_torch_fx_available = False
|
272 |
+
if _torch_available:
|
273 |
+
torch_version = version.parse(_torch_version)
|
274 |
+
_torch_fx_available = (torch_version.major, torch_version.minor) >= (
|
275 |
+
TORCH_FX_REQUIRED_VERSION.major,
|
276 |
+
TORCH_FX_REQUIRED_VERSION.minor,
|
277 |
+
)
|
278 |
+
|
279 |
+
|
280 |
+
_torch_xla_available = False
|
281 |
+
if USE_TORCH_XLA in ENV_VARS_TRUE_VALUES:
|
282 |
+
_torch_xla_available, _torch_xla_version = _is_package_available("torch_xla", return_version=True)
|
283 |
+
if _torch_xla_available:
|
284 |
+
logger.info(f"Torch XLA version {_torch_xla_version} available.")
|
285 |
+
|
286 |
+
|
287 |
+
def is_kenlm_available():
|
288 |
+
return _kenlm_available
|
289 |
+
|
290 |
+
|
291 |
+
def is_cv2_available():
|
292 |
+
return _cv2_available
|
293 |
+
|
294 |
+
|
295 |
+
def is_torch_available():
|
296 |
+
return _torch_available
|
297 |
+
|
298 |
+
|
299 |
+
def is_torch_deterministic():
|
300 |
+
"""
|
301 |
+
Check whether pytorch uses deterministic algorithms by looking if torch.set_deterministic_debug_mode() is set to 1 or 2"
|
302 |
+
"""
|
303 |
+
import torch
|
304 |
+
|
305 |
+
if torch.get_deterministic_debug_mode() == 0:
|
306 |
+
return False
|
307 |
+
else:
|
308 |
+
return True
|
309 |
+
|
310 |
+
|
311 |
+
def is_hqq_available():
|
312 |
+
return _hqq_available
|
313 |
+
|
314 |
+
|
315 |
+
def is_pygments_available():
|
316 |
+
return _pygments_available
|
317 |
+
|
318 |
+
|
319 |
+
def get_torch_version():
|
320 |
+
return _torch_version
|
321 |
+
|
322 |
+
|
323 |
+
def is_torch_sdpa_available():
|
324 |
+
if not is_torch_available():
|
325 |
+
return False
|
326 |
+
elif _torch_version == "N/A":
|
327 |
+
return False
|
328 |
+
|
329 |
+
# NOTE: We require torch>=2.1 (and not torch>=2.0) to use SDPA in Transformers for two reasons:
|
330 |
+
# - Allow the global use of the `scale` argument introduced in https://github.com/pytorch/pytorch/pull/95259
|
331 |
+
# - Memory-efficient attention supports arbitrary attention_mask: https://github.com/pytorch/pytorch/pull/104310
|
332 |
+
# NOTE: We require torch>=2.1.1 to avoid a numerical issue in SDPA with non-contiguous inputs: https://github.com/pytorch/pytorch/issues/112577
|
333 |
+
return version.parse(_torch_version) >= version.parse("2.1.1")
|
334 |
+
|
335 |
+
|
336 |
+
def is_torchvision_available():
|
337 |
+
return _torchvision_available
|
338 |
+
|
339 |
+
|
340 |
+
def is_galore_torch_available():
|
341 |
+
return _galore_torch_available
|
342 |
+
|
343 |
+
|
344 |
+
def is_lomo_available():
|
345 |
+
return _lomo_available
|
346 |
+
|
347 |
+
|
348 |
+
def is_pyctcdecode_available():
|
349 |
+
return _pyctcdecode_available
|
350 |
+
|
351 |
+
|
352 |
+
def is_librosa_available():
|
353 |
+
return _librosa_available
|
354 |
+
|
355 |
+
|
356 |
+
def is_essentia_available():
|
357 |
+
return _essentia_available
|
358 |
+
|
359 |
+
|
360 |
+
def is_pretty_midi_available():
|
361 |
+
return _pretty_midi_available
|
362 |
+
|
363 |
+
|
364 |
+
def is_torch_cuda_available():
|
365 |
+
if is_torch_available():
|
366 |
+
import torch
|
367 |
+
|
368 |
+
return torch.cuda.is_available()
|
369 |
+
else:
|
370 |
+
return False
|
371 |
+
|
372 |
+
|
373 |
+
def is_mamba_ssm_available():
|
374 |
+
if is_torch_available():
|
375 |
+
import torch
|
376 |
+
|
377 |
+
if not torch.cuda.is_available():
|
378 |
+
return False
|
379 |
+
else:
|
380 |
+
return _is_package_available("mamba_ssm")
|
381 |
+
return False
|
382 |
+
|
383 |
+
|
384 |
+
def is_causal_conv1d_available():
|
385 |
+
if is_torch_available():
|
386 |
+
import torch
|
387 |
+
|
388 |
+
if not torch.cuda.is_available():
|
389 |
+
return False
|
390 |
+
return _is_package_available("causal_conv1d")
|
391 |
+
return False
|
392 |
+
|
393 |
+
|
394 |
+
def is_torch_mps_available():
|
395 |
+
if is_torch_available():
|
396 |
+
import torch
|
397 |
+
|
398 |
+
if hasattr(torch.backends, "mps"):
|
399 |
+
return torch.backends.mps.is_available() and torch.backends.mps.is_built()
|
400 |
+
return False
|
401 |
+
|
402 |
+
|
403 |
+
def is_torch_bf16_gpu_available():
|
404 |
+
if not is_torch_available():
|
405 |
+
return False
|
406 |
+
|
407 |
+
import torch
|
408 |
+
|
409 |
+
return torch.cuda.is_available() and torch.cuda.is_bf16_supported()
|
410 |
+
|
411 |
+
|
412 |
+
def is_torch_bf16_cpu_available():
|
413 |
+
if not is_torch_available():
|
414 |
+
return False
|
415 |
+
|
416 |
+
import torch
|
417 |
+
|
418 |
+
try:
|
419 |
+
# multiple levels of AttributeError depending on the pytorch version so do them all in one check
|
420 |
+
_ = torch.cpu.amp.autocast
|
421 |
+
except AttributeError:
|
422 |
+
return False
|
423 |
+
|
424 |
+
return True
|
425 |
+
|
426 |
+
|
427 |
+
def is_torch_bf16_available():
|
428 |
+
# the original bf16 check was for gpu only, but later a cpu/bf16 combo has emerged so this util
|
429 |
+
# has become ambiguous and therefore deprecated
|
430 |
+
warnings.warn(
|
431 |
+
"The util is_torch_bf16_available is deprecated, please use is_torch_bf16_gpu_available "
|
432 |
+
"or is_torch_bf16_cpu_available instead according to whether it's used with cpu or gpu",
|
433 |
+
FutureWarning,
|
434 |
+
)
|
435 |
+
return is_torch_bf16_gpu_available()
|
436 |
+
|
437 |
+
|
438 |
+
@lru_cache()
|
439 |
+
def is_torch_fp16_available_on_device(device):
|
440 |
+
if not is_torch_available():
|
441 |
+
return False
|
442 |
+
|
443 |
+
import torch
|
444 |
+
|
445 |
+
try:
|
446 |
+
x = torch.zeros(2, 2, dtype=torch.float16).to(device)
|
447 |
+
_ = x @ x
|
448 |
+
|
449 |
+
# At this moment, let's be strict of the check: check if `LayerNorm` is also supported on device, because many
|
450 |
+
# models use this layer.
|
451 |
+
batch, sentence_length, embedding_dim = 3, 4, 5
|
452 |
+
embedding = torch.randn(batch, sentence_length, embedding_dim, dtype=torch.float16, device=device)
|
453 |
+
layer_norm = torch.nn.LayerNorm(embedding_dim, dtype=torch.float16, device=device)
|
454 |
+
_ = layer_norm(embedding)
|
455 |
+
|
456 |
+
except: # noqa: E722
|
457 |
+
# TODO: more precise exception matching, if possible.
|
458 |
+
# most backends should return `RuntimeError` however this is not guaranteed.
|
459 |
+
return False
|
460 |
+
|
461 |
+
return True
|
462 |
+
|
463 |
+
|
464 |
+
@lru_cache()
|
465 |
+
def is_torch_bf16_available_on_device(device):
|
466 |
+
if not is_torch_available():
|
467 |
+
return False
|
468 |
+
|
469 |
+
import torch
|
470 |
+
|
471 |
+
if device == "cuda":
|
472 |
+
return is_torch_bf16_gpu_available()
|
473 |
+
|
474 |
+
try:
|
475 |
+
x = torch.zeros(2, 2, dtype=torch.bfloat16).to(device)
|
476 |
+
_ = x @ x
|
477 |
+
except: # noqa: E722
|
478 |
+
# TODO: more precise exception matching, if possible.
|
479 |
+
# most backends should return `RuntimeError` however this is not guaranteed.
|
480 |
+
return False
|
481 |
+
|
482 |
+
return True
|
483 |
+
|
484 |
+
|
485 |
+
def is_torch_tf32_available():
|
486 |
+
if not is_torch_available():
|
487 |
+
return False
|
488 |
+
|
489 |
+
import torch
|
490 |
+
|
491 |
+
if not torch.cuda.is_available() or torch.version.cuda is None:
|
492 |
+
return False
|
493 |
+
if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
|
494 |
+
return False
|
495 |
+
if int(torch.version.cuda.split(".")[0]) < 11:
|
496 |
+
return False
|
497 |
+
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
|
498 |
+
return False
|
499 |
+
|
500 |
+
return True
|
501 |
+
|
502 |
+
|
503 |
+
def is_torch_fx_available():
|
504 |
+
return _torch_fx_available
|
505 |
+
|
506 |
+
|
507 |
+
def is_peft_available():
|
508 |
+
return _peft_available
|
509 |
+
|
510 |
+
|
511 |
+
def is_bs4_available():
|
512 |
+
return _bs4_available
|
513 |
+
|
514 |
+
|
515 |
+
def is_tf_available():
|
516 |
+
return _tf_available
|
517 |
+
|
518 |
+
|
519 |
+
def is_coloredlogs_available():
|
520 |
+
return _coloredlogs_available
|
521 |
+
|
522 |
+
|
523 |
+
def is_tf2onnx_available():
|
524 |
+
return _tf2onnx_available
|
525 |
+
|
526 |
+
|
527 |
+
def is_onnx_available():
|
528 |
+
return _onnx_available
|
529 |
+
|
530 |
+
|
531 |
+
def is_openai_available():
|
532 |
+
return _openai_available
|
533 |
+
|
534 |
+
|
535 |
+
def is_flax_available():
|
536 |
+
return _flax_available
|
537 |
+
|
538 |
+
|
539 |
+
def is_ftfy_available():
|
540 |
+
return _ftfy_available
|
541 |
+
|
542 |
+
|
543 |
+
def is_g2p_en_available():
|
544 |
+
return _g2p_en_available
|
545 |
+
|
546 |
+
|
547 |
+
@lru_cache()
|
548 |
+
def is_torch_tpu_available(check_device=True):
|
549 |
+
"Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
|
550 |
+
warnings.warn(
|
551 |
+
"`is_torch_tpu_available` is deprecated and will be removed in 4.41.0. "
|
552 |
+
"Please use the `is_torch_xla_available` instead.",
|
553 |
+
FutureWarning,
|
554 |
+
)
|
555 |
+
|
556 |
+
if not _torch_available:
|
557 |
+
return False
|
558 |
+
if importlib.util.find_spec("torch_xla") is not None:
|
559 |
+
if check_device:
|
560 |
+
# We need to check if `xla_device` can be found, will raise a RuntimeError if not
|
561 |
+
try:
|
562 |
+
import torch_xla.core.xla_model as xm
|
563 |
+
|
564 |
+
_ = xm.xla_device()
|
565 |
+
return True
|
566 |
+
except RuntimeError:
|
567 |
+
return False
|
568 |
+
return True
|
569 |
+
return False
|
570 |
+
|
571 |
+
|
572 |
+
@lru_cache
|
573 |
+
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False):
|
574 |
+
"""
|
575 |
+
Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set
|
576 |
+
the USE_TORCH_XLA to false.
|
577 |
+
"""
|
578 |
+
assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true."
|
579 |
+
|
580 |
+
if not _torch_xla_available:
|
581 |
+
return False
|
582 |
+
|
583 |
+
import torch_xla
|
584 |
+
|
585 |
+
if check_is_gpu:
|
586 |
+
return torch_xla.runtime.device_type() in ["GPU", "CUDA"]
|
587 |
+
elif check_is_tpu:
|
588 |
+
return torch_xla.runtime.device_type() == "TPU"
|
589 |
+
|
590 |
+
return True
|
591 |
+
|
592 |
+
|
593 |
+
@lru_cache()
|
594 |
+
def is_torch_neuroncore_available(check_device=True):
|
595 |
+
if importlib.util.find_spec("torch_neuronx") is not None:
|
596 |
+
return is_torch_xla_available()
|
597 |
+
return False
|
598 |
+
|
599 |
+
|
600 |
+
@lru_cache()
|
601 |
+
def is_torch_npu_available(check_device=False):
|
602 |
+
"Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
|
603 |
+
if not _torch_available or importlib.util.find_spec("torch_npu") is None:
|
604 |
+
return False
|
605 |
+
|
606 |
+
import torch
|
607 |
+
import torch_npu # noqa: F401
|
608 |
+
|
609 |
+
if check_device:
|
610 |
+
try:
|
611 |
+
# Will raise a RuntimeError if no NPU is found
|
612 |
+
_ = torch.npu.device_count()
|
613 |
+
return torch.npu.is_available()
|
614 |
+
except RuntimeError:
|
615 |
+
return False
|
616 |
+
return hasattr(torch, "npu") and torch.npu.is_available()
|
617 |
+
|
618 |
+
|
619 |
+
@lru_cache()
|
620 |
+
def is_torch_mlu_available(check_device=False):
|
621 |
+
"Checks if `torch_mlu` is installed and potentially if a MLU is in the environment"
|
622 |
+
if not _torch_available or importlib.util.find_spec("torch_mlu") is None:
|
623 |
+
return False
|
624 |
+
|
625 |
+
import torch
|
626 |
+
import torch_mlu # noqa: F401
|
627 |
+
|
628 |
+
from ..dependency_versions_table import deps
|
629 |
+
|
630 |
+
deps["deepspeed"] = "deepspeed-mlu>=0.10.1"
|
631 |
+
|
632 |
+
if check_device:
|
633 |
+
try:
|
634 |
+
# Will raise a RuntimeError if no MLU is found
|
635 |
+
_ = torch.mlu.device_count()
|
636 |
+
return torch.mlu.is_available()
|
637 |
+
except RuntimeError:
|
638 |
+
return False
|
639 |
+
return hasattr(torch, "mlu") and torch.mlu.is_available()
|
640 |
+
|
641 |
+
|
642 |
+
def is_torchdynamo_available():
|
643 |
+
if not is_torch_available():
|
644 |
+
return False
|
645 |
+
try:
|
646 |
+
import torch._dynamo as dynamo # noqa: F401
|
647 |
+
|
648 |
+
return True
|
649 |
+
except Exception:
|
650 |
+
return False
|
651 |
+
|
652 |
+
|
653 |
+
def is_torch_compile_available():
|
654 |
+
if not is_torch_available():
|
655 |
+
return False
|
656 |
+
|
657 |
+
import torch
|
658 |
+
|
659 |
+
# We don't do any version check here to support nighlies marked as 1.14. Ultimately needs to check version against
|
660 |
+
# 2.0 but let's do it later.
|
661 |
+
return hasattr(torch, "compile")
|
662 |
+
|
663 |
+
|
664 |
+
def is_torchdynamo_compiling():
|
665 |
+
if not is_torch_available():
|
666 |
+
return False
|
667 |
+
try:
|
668 |
+
import torch._dynamo as dynamo # noqa: F401
|
669 |
+
|
670 |
+
return dynamo.is_compiling()
|
671 |
+
except Exception:
|
672 |
+
return False
|
673 |
+
|
674 |
+
|
675 |
+
def is_torch_tensorrt_fx_available():
|
676 |
+
if importlib.util.find_spec("torch_tensorrt") is None:
|
677 |
+
return False
|
678 |
+
return importlib.util.find_spec("torch_tensorrt.fx") is not None
|
679 |
+
|
680 |
+
|
681 |
+
def is_datasets_available():
|
682 |
+
return _datasets_available
|
683 |
+
|
684 |
+
|
685 |
+
def is_detectron2_available():
|
686 |
+
return _detectron2_available
|
687 |
+
|
688 |
+
|
689 |
+
def is_rjieba_available():
|
690 |
+
return _rjieba_available
|
691 |
+
|
692 |
+
|
693 |
+
def is_psutil_available():
|
694 |
+
return _psutil_available
|
695 |
+
|
696 |
+
|
697 |
+
def is_py3nvml_available():
|
698 |
+
return _py3nvml_available
|
699 |
+
|
700 |
+
|
701 |
+
def is_sacremoses_available():
|
702 |
+
return _sacremoses_available
|
703 |
+
|
704 |
+
|
705 |
+
def is_apex_available():
|
706 |
+
return _apex_available
|
707 |
+
|
708 |
+
|
709 |
+
def is_aqlm_available():
|
710 |
+
return _aqlm_available
|
711 |
+
|
712 |
+
|
713 |
+
def is_av_available():
|
714 |
+
return _av_available
|
715 |
+
|
716 |
+
|
717 |
+
def is_ninja_available():
|
718 |
+
r"""
|
719 |
+
Code comes from *torch.utils.cpp_extension.is_ninja_available()*. Returns `True` if the
|
720 |
+
[ninja](https://ninja-build.org/) build system is available on the system, `False` otherwise.
|
721 |
+
"""
|
722 |
+
try:
|
723 |
+
subprocess.check_output("ninja --version".split())
|
724 |
+
except Exception:
|
725 |
+
return False
|
726 |
+
else:
|
727 |
+
return True
|
728 |
+
|
729 |
+
|
730 |
+
def is_ipex_available():
|
731 |
+
def get_major_and_minor_from_version(full_version):
|
732 |
+
return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)
|
733 |
+
|
734 |
+
if not is_torch_available() or not _ipex_available:
|
735 |
+
return False
|
736 |
+
|
737 |
+
torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
|
738 |
+
ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
|
739 |
+
if torch_major_and_minor != ipex_major_and_minor:
|
740 |
+
logger.warning(
|
741 |
+
f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
|
742 |
+
f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
|
743 |
+
)
|
744 |
+
return False
|
745 |
+
return True
|
746 |
+
|
747 |
+
|
748 |
+
@lru_cache
|
749 |
+
def is_torch_xpu_available(check_device=False):
|
750 |
+
"Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment"
|
751 |
+
if not is_ipex_available():
|
752 |
+
return False
|
753 |
+
|
754 |
+
import intel_extension_for_pytorch # noqa: F401
|
755 |
+
import torch
|
756 |
+
|
757 |
+
if check_device:
|
758 |
+
try:
|
759 |
+
# Will raise a RuntimeError if no XPU is found
|
760 |
+
_ = torch.xpu.device_count()
|
761 |
+
return torch.xpu.is_available()
|
762 |
+
except RuntimeError:
|
763 |
+
return False
|
764 |
+
return hasattr(torch, "xpu") and torch.xpu.is_available()
|
765 |
+
|
766 |
+
|
767 |
+
def is_bitsandbytes_available():
|
768 |
+
if not is_torch_available():
|
769 |
+
return False
|
770 |
+
|
771 |
+
# bitsandbytes throws an error if cuda is not available
|
772 |
+
# let's avoid that by adding a simple check
|
773 |
+
import torch
|
774 |
+
|
775 |
+
return _bitsandbytes_available and torch.cuda.is_available()
|
776 |
+
|
777 |
+
|
778 |
+
def is_flash_attn_2_available():
|
779 |
+
if not is_torch_available():
|
780 |
+
return False
|
781 |
+
|
782 |
+
if not _is_package_available("flash_attn"):
|
783 |
+
return False
|
784 |
+
|
785 |
+
# Let's add an extra check to see if cuda is available
|
786 |
+
import torch
|
787 |
+
|
788 |
+
if not torch.cuda.is_available():
|
789 |
+
return False
|
790 |
+
|
791 |
+
if torch.version.cuda:
|
792 |
+
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
|
793 |
+
elif torch.version.hip:
|
794 |
+
# TODO: Bump the requirement to 2.1.0 once released in https://github.com/ROCmSoftwarePlatform/flash-attention
|
795 |
+
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.0.4")
|
796 |
+
else:
|
797 |
+
return False
|
798 |
+
|
799 |
+
|
800 |
+
def is_flash_attn_greater_or_equal_2_10():
|
801 |
+
if not _is_package_available("flash_attn"):
|
802 |
+
return False
|
803 |
+
|
804 |
+
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
|
805 |
+
|
806 |
+
|
807 |
+
def is_torchdistx_available():
|
808 |
+
return _torchdistx_available
|
809 |
+
|
810 |
+
|
811 |
+
def is_faiss_available():
|
812 |
+
return _faiss_available
|
813 |
+
|
814 |
+
|
815 |
+
def is_scipy_available():
|
816 |
+
return _scipy_available
|
817 |
+
|
818 |
+
|
819 |
+
def is_sklearn_available():
|
820 |
+
return _sklearn_available
|
821 |
+
|
822 |
+
|
823 |
+
def is_sentencepiece_available():
|
824 |
+
return _sentencepiece_available
|
825 |
+
|
826 |
+
|
827 |
+
def is_seqio_available():
|
828 |
+
return _is_seqio_available
|
829 |
+
|
830 |
+
|
831 |
+
def is_gguf_available():
|
832 |
+
return _is_gguf_available
|
833 |
+
|
834 |
+
|
835 |
+
def is_protobuf_available():
|
836 |
+
if importlib.util.find_spec("google") is None:
|
837 |
+
return False
|
838 |
+
return importlib.util.find_spec("google.protobuf") is not None
|
839 |
+
|
840 |
+
|
841 |
+
def is_accelerate_available(min_version: str = ACCELERATE_MIN_VERSION):
|
842 |
+
return _accelerate_available and version.parse(_accelerate_version) >= version.parse(min_version)
|
843 |
+
|
844 |
+
|
845 |
+
def is_fsdp_available(min_version: str = FSDP_MIN_VERSION):
|
846 |
+
return is_torch_available() and version.parse(_torch_version) >= version.parse(min_version)
|
847 |
+
|
848 |
+
|
849 |
+
def is_optimum_available():
|
850 |
+
return _optimum_available
|
851 |
+
|
852 |
+
|
853 |
+
def is_auto_awq_available():
|
854 |
+
return _auto_awq_available
|
855 |
+
|
856 |
+
|
857 |
+
def is_quanto_available():
|
858 |
+
return _quanto_available
|
859 |
+
|
860 |
+
|
861 |
+
def is_auto_gptq_available():
|
862 |
+
return _auto_gptq_available
|
863 |
+
|
864 |
+
|
865 |
+
def is_eetq_available():
|
866 |
+
return _eetq_available
|
867 |
+
|
868 |
+
|
869 |
+
def is_levenshtein_available():
|
870 |
+
return _levenshtein_available
|
871 |
+
|
872 |
+
|
873 |
+
def is_optimum_neuron_available():
|
874 |
+
return _optimum_available and _is_package_available("optimum.neuron")
|
875 |
+
|
876 |
+
|
877 |
+
def is_safetensors_available():
|
878 |
+
return _safetensors_available
|
879 |
+
|
880 |
+
|
881 |
+
def is_tokenizers_available():
|
882 |
+
return _tokenizers_available
|
883 |
+
|
884 |
+
|
885 |
+
@lru_cache
|
886 |
+
def is_vision_available():
|
887 |
+
_pil_available = importlib.util.find_spec("PIL") is not None
|
888 |
+
if _pil_available:
|
889 |
+
try:
|
890 |
+
package_version = importlib.metadata.version("Pillow")
|
891 |
+
except importlib.metadata.PackageNotFoundError:
|
892 |
+
try:
|
893 |
+
package_version = importlib.metadata.version("Pillow-SIMD")
|
894 |
+
except importlib.metadata.PackageNotFoundError:
|
895 |
+
return False
|
896 |
+
logger.debug(f"Detected PIL version {package_version}")
|
897 |
+
return _pil_available
|
898 |
+
|
899 |
+
|
900 |
+
def is_pytesseract_available():
|
901 |
+
return _pytesseract_available
|
902 |
+
|
903 |
+
|
904 |
+
def is_pytest_available():
|
905 |
+
return _pytest_available
|
906 |
+
|
907 |
+
|
908 |
+
def is_spacy_available():
|
909 |
+
return _spacy_available
|
910 |
+
|
911 |
+
|
912 |
+
def is_tensorflow_text_available():
|
913 |
+
return is_tf_available() and _tensorflow_text_available
|
914 |
+
|
915 |
+
|
916 |
+
def is_keras_nlp_available():
|
917 |
+
return is_tensorflow_text_available() and _keras_nlp_available
|
918 |
+
|
919 |
+
|
920 |
+
def is_in_notebook():
|
921 |
+
try:
|
922 |
+
# Test adapted from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
|
923 |
+
get_ipython = sys.modules["IPython"].get_ipython
|
924 |
+
if "IPKernelApp" not in get_ipython().config:
|
925 |
+
raise ImportError("console")
|
926 |
+
if "VSCODE_PID" in os.environ:
|
927 |
+
raise ImportError("vscode")
|
928 |
+
if "DATABRICKS_RUNTIME_VERSION" in os.environ and os.environ["DATABRICKS_RUNTIME_VERSION"] < "11.0":
|
929 |
+
# Databricks Runtime 11.0 and above uses IPython kernel by default so it should be compatible with Jupyter notebook
|
930 |
+
# https://docs.microsoft.com/en-us/azure/databricks/notebooks/ipython-kernel
|
931 |
+
raise ImportError("databricks")
|
932 |
+
|
933 |
+
return importlib.util.find_spec("IPython") is not None
|
934 |
+
except (AttributeError, ImportError, KeyError):
|
935 |
+
return False
|
936 |
+
|
937 |
+
|
938 |
+
def is_pytorch_quantization_available():
|
939 |
+
return _pytorch_quantization_available
|
940 |
+
|
941 |
+
|
942 |
+
def is_tensorflow_probability_available():
|
943 |
+
return _tensorflow_probability_available
|
944 |
+
|
945 |
+
|
946 |
+
def is_pandas_available():
|
947 |
+
return _pandas_available
|
948 |
+
|
949 |
+
|
950 |
+
def is_sagemaker_dp_enabled():
|
951 |
+
# Get the sagemaker specific env variable.
|
952 |
+
sagemaker_params = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
|
953 |
+
try:
|
954 |
+
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
|
955 |
+
sagemaker_params = json.loads(sagemaker_params)
|
956 |
+
if not sagemaker_params.get("sagemaker_distributed_dataparallel_enabled", False):
|
957 |
+
return False
|
958 |
+
except json.JSONDecodeError:
|
959 |
+
return False
|
960 |
+
# Lastly, check if the `smdistributed` module is present.
|
961 |
+
return _smdistributed_available
|
962 |
+
|
963 |
+
|
964 |
+
def is_sagemaker_mp_enabled():
|
965 |
+
# Get the sagemaker specific mp parameters from smp_options variable.
|
966 |
+
smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}")
|
967 |
+
try:
|
968 |
+
# Parse it and check the field "partitions" is included, it is required for model parallel.
|
969 |
+
smp_options = json.loads(smp_options)
|
970 |
+
if "partitions" not in smp_options:
|
971 |
+
return False
|
972 |
+
except json.JSONDecodeError:
|
973 |
+
return False
|
974 |
+
|
975 |
+
# Get the sagemaker specific framework parameters from mpi_options variable.
|
976 |
+
mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
|
977 |
+
try:
|
978 |
+
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
|
979 |
+
mpi_options = json.loads(mpi_options)
|
980 |
+
if not mpi_options.get("sagemaker_mpi_enabled", False):
|
981 |
+
return False
|
982 |
+
except json.JSONDecodeError:
|
983 |
+
return False
|
984 |
+
# Lastly, check if the `smdistributed` module is present.
|
985 |
+
return _smdistributed_available
|
986 |
+
|
987 |
+
|
988 |
+
def is_training_run_on_sagemaker():
|
989 |
+
return "SAGEMAKER_JOB_NAME" in os.environ
|
990 |
+
|
991 |
+
|
992 |
+
def is_soundfile_availble():
|
993 |
+
return _soundfile_available
|
994 |
+
|
995 |
+
|
996 |
+
def is_timm_available():
|
997 |
+
return _timm_available
|
998 |
+
|
999 |
+
|
1000 |
+
def is_natten_available():
|
1001 |
+
return _natten_available
|
1002 |
+
|
1003 |
+
|
1004 |
+
def is_nltk_available():
|
1005 |
+
return _nltk_available
|
1006 |
+
|
1007 |
+
|
1008 |
+
def is_torchaudio_available():
|
1009 |
+
return _torchaudio_available
|
1010 |
+
|
1011 |
+
|
1012 |
+
def is_speech_available():
|
1013 |
+
# For now this depends on torchaudio but the exact dependency might evolve in the future.
|
1014 |
+
return _torchaudio_available
|
1015 |
+
|
1016 |
+
|
1017 |
+
def is_phonemizer_available():
|
1018 |
+
return _phonemizer_available
|
1019 |
+
|
1020 |
+
|
1021 |
+
def torch_only_method(fn):
|
1022 |
+
def wrapper(*args, **kwargs):
|
1023 |
+
if not _torch_available:
|
1024 |
+
raise ImportError(
|
1025 |
+
"You need to install pytorch to use this method or class, "
|
1026 |
+
"or activate it with environment variables USE_TORCH=1 and USE_TF=0."
|
1027 |
+
)
|
1028 |
+
else:
|
1029 |
+
return fn(*args, **kwargs)
|
1030 |
+
|
1031 |
+
return wrapper
|
1032 |
+
|
1033 |
+
|
1034 |
+
def is_ccl_available():
|
1035 |
+
return _is_ccl_available
|
1036 |
+
|
1037 |
+
|
1038 |
+
def is_decord_available():
|
1039 |
+
return _decord_available
|
1040 |
+
|
1041 |
+
|
1042 |
+
def is_sudachi_available():
|
1043 |
+
return _sudachipy_available
|
1044 |
+
|
1045 |
+
|
1046 |
+
def get_sudachi_version():
|
1047 |
+
return _sudachipy_version
|
1048 |
+
|
1049 |
+
|
1050 |
+
def is_sudachi_projection_available():
|
1051 |
+
if not is_sudachi_available():
|
1052 |
+
return False
|
1053 |
+
|
1054 |
+
# NOTE: We require sudachipy>=0.6.8 to use projection option in sudachi_kwargs for the constructor of BertJapaneseTokenizer.
|
1055 |
+
# - `projection` option is not supported in sudachipy<0.6.8, see https://github.com/WorksApplications/sudachi.rs/issues/230
|
1056 |
+
return version.parse(_sudachipy_version) >= version.parse("0.6.8")
|
1057 |
+
|
1058 |
+
|
1059 |
+
def is_jumanpp_available():
|
1060 |
+
return (importlib.util.find_spec("rhoknp") is not None) and (shutil.which("jumanpp") is not None)
|
1061 |
+
|
1062 |
+
|
1063 |
+
def is_cython_available():
|
1064 |
+
return importlib.util.find_spec("pyximport") is not None
|
1065 |
+
|
1066 |
+
|
1067 |
+
def is_jieba_available():
|
1068 |
+
return _jieba_available
|
1069 |
+
|
1070 |
+
|
1071 |
+
def is_jinja_available():
|
1072 |
+
return _jinja_available
|
1073 |
+
|
1074 |
+
|
1075 |
+
def is_mlx_available():
|
1076 |
+
return _mlx_available
|
1077 |
+
|
1078 |
+
|
1079 |
+
# docstyle-ignore
|
1080 |
+
AV_IMPORT_ERROR = """
|
1081 |
+
{0} requires the PyAv library but it was not found in your environment. You can install it with:
|
1082 |
+
```
|
1083 |
+
pip install av
|
1084 |
+
```
|
1085 |
+
Please note that you may need to restart your runtime after installation.
|
1086 |
+
"""
|
1087 |
+
|
1088 |
+
|
1089 |
+
# docstyle-ignore
|
1090 |
+
CV2_IMPORT_ERROR = """
|
1091 |
+
{0} requires the OpenCV library but it was not found in your environment. You can install it with:
|
1092 |
+
```
|
1093 |
+
pip install opencv-python
|
1094 |
+
```
|
1095 |
+
Please note that you may need to restart your runtime after installation.
|
1096 |
+
"""
|
1097 |
+
|
1098 |
+
|
1099 |
+
# docstyle-ignore
|
1100 |
+
DATASETS_IMPORT_ERROR = """
|
1101 |
+
{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
|
1102 |
+
```
|
1103 |
+
pip install datasets
|
1104 |
+
```
|
1105 |
+
In a notebook or a colab, you can install it by executing a cell with
|
1106 |
+
```
|
1107 |
+
!pip install datasets
|
1108 |
+
```
|
1109 |
+
then restarting your kernel.
|
1110 |
+
|
1111 |
+
Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
|
1112 |
+
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
|
1113 |
+
that python file if that's the case. Please note that you may need to restart your runtime after installation.
|
1114 |
+
"""
|
1115 |
+
|
1116 |
+
|
1117 |
+
# docstyle-ignore
|
1118 |
+
TOKENIZERS_IMPORT_ERROR = """
|
1119 |
+
{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
|
1120 |
+
```
|
1121 |
+
pip install tokenizers
|
1122 |
+
```
|
1123 |
+
In a notebook or a colab, you can install it by executing a cell with
|
1124 |
+
```
|
1125 |
+
!pip install tokenizers
|
1126 |
+
```
|
1127 |
+
Please note that you may need to restart your runtime after installation.
|
1128 |
+
"""
|
1129 |
+
|
1130 |
+
|
1131 |
+
# docstyle-ignore
|
1132 |
+
SENTENCEPIECE_IMPORT_ERROR = """
|
1133 |
+
{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
|
1134 |
+
installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
|
1135 |
+
that match your environment. Please note that you may need to restart your runtime after installation.
|
1136 |
+
"""
|
1137 |
+
|
1138 |
+
|
1139 |
+
# docstyle-ignore
|
1140 |
+
PROTOBUF_IMPORT_ERROR = """
|
1141 |
+
{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
|
1142 |
+
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
|
1143 |
+
that match your environment. Please note that you may need to restart your runtime after installation.
|
1144 |
+
"""
|
1145 |
+
|
1146 |
+
|
1147 |
+
# docstyle-ignore
|
1148 |
+
FAISS_IMPORT_ERROR = """
|
1149 |
+
{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
|
1150 |
+
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
|
1151 |
+
that match your environment. Please note that you may need to restart your runtime after installation.
|
1152 |
+
"""
|
1153 |
+
|
1154 |
+
|
1155 |
+
# docstyle-ignore
|
1156 |
+
PYTORCH_IMPORT_ERROR = """
|
1157 |
+
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
|
1158 |
+
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
|
1159 |
+
Please note that you may need to restart your runtime after installation.
|
1160 |
+
"""
|
1161 |
+
|
1162 |
+
|
1163 |
+
# docstyle-ignore
|
1164 |
+
TORCHVISION_IMPORT_ERROR = """
|
1165 |
+
{0} requires the Torchvision library but it was not found in your environment. Checkout the instructions on the
|
1166 |
+
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
|
1167 |
+
Please note that you may need to restart your runtime after installation.
|
1168 |
+
"""
|
1169 |
+
|
1170 |
+
# docstyle-ignore
|
1171 |
+
PYTORCH_IMPORT_ERROR_WITH_TF = """
|
1172 |
+
{0} requires the PyTorch library but it was not found in your environment.
|
1173 |
+
However, we were able to find a TensorFlow installation. TensorFlow classes begin
|
1174 |
+
with "TF", but are otherwise identically named to our PyTorch classes. This
|
1175 |
+
means that the TF equivalent of the class you tried to import would be "TF{0}".
|
1176 |
+
If you want to use TensorFlow, please use TF classes instead!
|
1177 |
+
|
1178 |
+
If you really do want to use PyTorch please go to
|
1179 |
+
https://pytorch.org/get-started/locally/ and follow the instructions that
|
1180 |
+
match your environment.
|
1181 |
+
"""
|
1182 |
+
|
1183 |
+
# docstyle-ignore
|
1184 |
+
TF_IMPORT_ERROR_WITH_PYTORCH = """
|
1185 |
+
{0} requires the TensorFlow library but it was not found in your environment.
|
1186 |
+
However, we were able to find a PyTorch installation. PyTorch classes do not begin
|
1187 |
+
with "TF", but are otherwise identically named to our TF classes.
|
1188 |
+
If you want to use PyTorch, please use those classes instead!
|
1189 |
+
|
1190 |
+
If you really do want to use TensorFlow, please follow the instructions on the
|
1191 |
+
installation page https://www.tensorflow.org/install that match your environment.
|
1192 |
+
"""
|
1193 |
+
|
1194 |
+
# docstyle-ignore
|
1195 |
+
BS4_IMPORT_ERROR = """
|
1196 |
+
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
|
1197 |
+
`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
|
1198 |
+
"""
|
1199 |
+
|
1200 |
+
|
1201 |
+
# docstyle-ignore
|
1202 |
+
SKLEARN_IMPORT_ERROR = """
|
1203 |
+
{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
|
1204 |
+
```
|
1205 |
+
pip install -U scikit-learn
|
1206 |
+
```
|
1207 |
+
In a notebook or a colab, you can install it by executing a cell with
|
1208 |
+
```
|
1209 |
+
!pip install -U scikit-learn
|
1210 |
+
```
|
1211 |
+
Please note that you may need to restart your runtime after installation.
|
1212 |
+
"""
|
1213 |
+
|
1214 |
+
|
1215 |
+
# docstyle-ignore
|
1216 |
+
TENSORFLOW_IMPORT_ERROR = """
|
1217 |
+
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
|
1218 |
+
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
|
1219 |
+
Please note that you may need to restart your runtime after installation.
|
1220 |
+
"""
|
1221 |
+
|
1222 |
+
|
1223 |
+
# docstyle-ignore
|
1224 |
+
DETECTRON2_IMPORT_ERROR = """
|
1225 |
+
{0} requires the detectron2 library but it was not found in your environment. Checkout the instructions on the
|
1226 |
+
installation page: https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md and follow the ones
|
1227 |
+
that match your environment. Please note that you may need to restart your runtime after installation.
|
1228 |
+
"""
|
1229 |
+
|
1230 |
+
|
1231 |
+
# docstyle-ignore
|
1232 |
+
FLAX_IMPORT_ERROR = """
|
1233 |
+
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
|
1234 |
+
installation page: https://github.com/google/flax and follow the ones that match your environment.
|
1235 |
+
Please note that you may need to restart your runtime after installation.
|
1236 |
+
"""
|
1237 |
+
|
1238 |
+
# docstyle-ignore
|
1239 |
+
FTFY_IMPORT_ERROR = """
|
1240 |
+
{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
|
1241 |
+
installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
|
1242 |
+
that match your environment. Please note that you may need to restart your runtime after installation.
|
1243 |
+
"""
|
1244 |
+
|
1245 |
+
LEVENSHTEIN_IMPORT_ERROR = """
|
1246 |
+
{0} requires the python-Levenshtein library but it was not found in your environment. You can install it with pip: `pip
|
1247 |
+
install python-Levenshtein`. Please note that you may need to restart your runtime after installation.
|
1248 |
+
"""
|
1249 |
+
|
1250 |
+
# docstyle-ignore
|
1251 |
+
G2P_EN_IMPORT_ERROR = """
|
1252 |
+
{0} requires the g2p-en library but it was not found in your environment. You can install it with pip:
|
1253 |
+
`pip install g2p-en`. Please note that you may need to restart your runtime after installation.
|
1254 |
+
"""
|
1255 |
+
|
1256 |
+
# docstyle-ignore
|
1257 |
+
PYTORCH_QUANTIZATION_IMPORT_ERROR = """
|
1258 |
+
{0} requires the pytorch-quantization library but it was not found in your environment. You can install it with pip:
|
1259 |
+
`pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
|
1260 |
+
Please note that you may need to restart your runtime after installation.
|
1261 |
+
"""
|
1262 |
+
|
1263 |
+
# docstyle-ignore
|
1264 |
+
TENSORFLOW_PROBABILITY_IMPORT_ERROR = """
|
1265 |
+
{0} requires the tensorflow_probability library but it was not found in your environment. You can install it with pip as
|
1266 |
+
explained here: https://github.com/tensorflow/probability. Please note that you may need to restart your runtime after installation.
|
1267 |
+
"""
|
1268 |
+
|
1269 |
+
# docstyle-ignore
|
1270 |
+
TENSORFLOW_TEXT_IMPORT_ERROR = """
|
1271 |
+
{0} requires the tensorflow_text library but it was not found in your environment. You can install it with pip as
|
1272 |
+
explained here: https://www.tensorflow.org/text/guide/tf_text_intro.
|
1273 |
+
Please note that you may need to restart your runtime after installation.
|
1274 |
+
"""
|
1275 |
+
|
1276 |
+
|
1277 |
+
# docstyle-ignore
|
1278 |
+
PANDAS_IMPORT_ERROR = """
|
1279 |
+
{0} requires the pandas library but it was not found in your environment. You can install it with pip as
|
1280 |
+
explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.
|
1281 |
+
Please note that you may need to restart your runtime after installation.
|
1282 |
+
"""
|
1283 |
+
|
1284 |
+
|
1285 |
+
# docstyle-ignore
|
1286 |
+
PHONEMIZER_IMPORT_ERROR = """
|
1287 |
+
{0} requires the phonemizer library but it was not found in your environment. You can install it with pip:
|
1288 |
+
`pip install phonemizer`. Please note that you may need to restart your runtime after installation.
|
1289 |
+
"""
|
1290 |
+
|
1291 |
+
|
1292 |
+
# docstyle-ignore
|
1293 |
+
SACREMOSES_IMPORT_ERROR = """
|
1294 |
+
{0} requires the sacremoses library but it was not found in your environment. You can install it with pip:
|
1295 |
+
`pip install sacremoses`. Please note that you may need to restart your runtime after installation.
|
1296 |
+
"""
|
1297 |
+
|
1298 |
+
# docstyle-ignore
|
1299 |
+
SCIPY_IMPORT_ERROR = """
|
1300 |
+
{0} requires the scipy library but it was not found in your environment. You can install it with pip:
|
1301 |
+
`pip install scipy`. Please note that you may need to restart your runtime after installation.
|
1302 |
+
"""
|
1303 |
+
|
1304 |
+
|
1305 |
+
# docstyle-ignore
|
1306 |
+
SPEECH_IMPORT_ERROR = """
|
1307 |
+
{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:
|
1308 |
+
`pip install torchaudio`. Please note that you may need to restart your runtime after installation.
|
1309 |
+
"""
|
1310 |
+
|
1311 |
+
# docstyle-ignore
|
1312 |
+
TIMM_IMPORT_ERROR = """
|
1313 |
+
{0} requires the timm library but it was not found in your environment. You can install it with pip:
|
1314 |
+
`pip install timm`. Please note that you may need to restart your runtime after installation.
|
1315 |
+
"""
|
1316 |
+
|
1317 |
+
# docstyle-ignore
|
1318 |
+
NATTEN_IMPORT_ERROR = """
|
1319 |
+
{0} requires the natten library but it was not found in your environment. You can install it by referring to:
|
1320 |
+
shi-labs.com/natten . You can also install it with pip (may take longer to build):
|
1321 |
+
`pip install natten`. Please note that you may need to restart your runtime after installation.
|
1322 |
+
"""
|
1323 |
+
|
1324 |
+
NUMEXPR_IMPORT_ERROR = """
|
1325 |
+
{0} requires the numexpr library but it was not found in your environment. You can install it by referring to:
|
1326 |
+
https://numexpr.readthedocs.io/en/latest/index.html.
|
1327 |
+
"""
|
1328 |
+
|
1329 |
+
|
1330 |
+
# docstyle-ignore
|
1331 |
+
NLTK_IMPORT_ERROR = """
|
1332 |
+
{0} requires the NLTK library but it was not found in your environment. You can install it by referring to:
|
1333 |
+
https://www.nltk.org/install.html. Please note that you may need to restart your runtime after installation.
|
1334 |
+
"""
|
1335 |
+
|
1336 |
+
|
1337 |
+
# docstyle-ignore
|
1338 |
+
VISION_IMPORT_ERROR = """
|
1339 |
+
{0} requires the PIL library but it was not found in your environment. You can install it with pip:
|
1340 |
+
`pip install pillow`. Please note that you may need to restart your runtime after installation.
|
1341 |
+
"""
|
1342 |
+
|
1343 |
+
|
1344 |
+
# docstyle-ignore
|
1345 |
+
PYTESSERACT_IMPORT_ERROR = """
|
1346 |
+
{0} requires the PyTesseract library but it was not found in your environment. You can install it with pip:
|
1347 |
+
`pip install pytesseract`. Please note that you may need to restart your runtime after installation.
|
1348 |
+
"""
|
1349 |
+
|
1350 |
+
# docstyle-ignore
|
1351 |
+
PYCTCDECODE_IMPORT_ERROR = """
|
1352 |
+
{0} requires the pyctcdecode library but it was not found in your environment. You can install it with pip:
|
1353 |
+
`pip install pyctcdecode`. Please note that you may need to restart your runtime after installation.
|
1354 |
+
"""
|
1355 |
+
|
1356 |
+
# docstyle-ignore
|
1357 |
+
ACCELERATE_IMPORT_ERROR = """
|
1358 |
+
{0} requires the accelerate library >= {ACCELERATE_MIN_VERSION} it was not found in your environment.
|
1359 |
+
You can install or update it with pip: `pip install --upgrade accelerate`. Please note that you may need to restart your
|
1360 |
+
runtime after installation.
|
1361 |
+
"""
|
1362 |
+
|
1363 |
+
# docstyle-ignore
|
1364 |
+
CCL_IMPORT_ERROR = """
|
1365 |
+
{0} requires the torch ccl library but it was not found in your environment. You can install it with pip:
|
1366 |
+
`pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable`
|
1367 |
+
Please note that you may need to restart your runtime after installation.
|
1368 |
+
"""
|
1369 |
+
|
1370 |
+
# docstyle-ignore
|
1371 |
+
ESSENTIA_IMPORT_ERROR = """
|
1372 |
+
{0} requires essentia library. But that was not found in your environment. You can install them with pip:
|
1373 |
+
`pip install essentia==2.1b6.dev1034`
|
1374 |
+
Please note that you may need to restart your runtime after installation.
|
1375 |
+
"""
|
1376 |
+
|
1377 |
+
# docstyle-ignore
|
1378 |
+
LIBROSA_IMPORT_ERROR = """
|
1379 |
+
{0} requires thes librosa library. But that was not found in your environment. You can install them with pip:
|
1380 |
+
`pip install librosa`
|
1381 |
+
Please note that you may need to restart your runtime after installation.
|
1382 |
+
"""
|
1383 |
+
|
1384 |
+
# docstyle-ignore
|
1385 |
+
PRETTY_MIDI_IMPORT_ERROR = """
|
1386 |
+
{0} requires thes pretty_midi library. But that was not found in your environment. You can install them with pip:
|
1387 |
+
`pip install pretty_midi`
|
1388 |
+
Please note that you may need to restart your runtime after installation.
|
1389 |
+
"""
|
1390 |
+
|
1391 |
+
DECORD_IMPORT_ERROR = """
|
1392 |
+
{0} requires the decord library but it was not found in your environment. You can install it with pip: `pip install
|
1393 |
+
decord`. Please note that you may need to restart your runtime after installation.
|
1394 |
+
"""
|
1395 |
+
|
1396 |
+
CYTHON_IMPORT_ERROR = """
|
1397 |
+
{0} requires the Cython library but it was not found in your environment. You can install it with pip: `pip install
|
1398 |
+
Cython`. Please note that you may need to restart your runtime after installation.
|
1399 |
+
"""
|
1400 |
+
|
1401 |
+
JIEBA_IMPORT_ERROR = """
|
1402 |
+
{0} requires the jieba library but it was not found in your environment. You can install it with pip: `pip install
|
1403 |
+
jieba`. Please note that you may need to restart your runtime after installation.
|
1404 |
+
"""
|
1405 |
+
|
1406 |
+
PEFT_IMPORT_ERROR = """
|
1407 |
+
{0} requires the peft library but it was not found in your environment. You can install it with pip: `pip install
|
1408 |
+
peft`. Please note that you may need to restart your runtime after installation.
|
1409 |
+
"""
|
1410 |
+
|
1411 |
+
JINJA_IMPORT_ERROR = """
|
1412 |
+
{0} requires the jinja library but it was not found in your environment. You can install it with pip: `pip install
|
1413 |
+
jinja2`. Please note that you may need to restart your runtime after installation.
|
1414 |
+
"""
|
1415 |
+
|
1416 |
+
BACKENDS_MAPPING = OrderedDict(
|
1417 |
+
[
|
1418 |
+
("av", (is_av_available, AV_IMPORT_ERROR)),
|
1419 |
+
("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
|
1420 |
+
("cv2", (is_cv2_available, CV2_IMPORT_ERROR)),
|
1421 |
+
("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
|
1422 |
+
("detectron2", (is_detectron2_available, DETECTRON2_IMPORT_ERROR)),
|
1423 |
+
("essentia", (is_essentia_available, ESSENTIA_IMPORT_ERROR)),
|
1424 |
+
("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
|
1425 |
+
("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
|
1426 |
+
("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
|
1427 |
+
("g2p_en", (is_g2p_en_available, G2P_EN_IMPORT_ERROR)),
|
1428 |
+
("pandas", (is_pandas_available, PANDAS_IMPORT_ERROR)),
|
1429 |
+
("phonemizer", (is_phonemizer_available, PHONEMIZER_IMPORT_ERROR)),
|
1430 |
+
("pretty_midi", (is_pretty_midi_available, PRETTY_MIDI_IMPORT_ERROR)),
|
1431 |
+
("levenshtein", (is_levenshtein_available, LEVENSHTEIN_IMPORT_ERROR)),
|
1432 |
+
("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
|
1433 |
+
("protobuf", (is_protobuf_available, PROTOBUF_IMPORT_ERROR)),
|
1434 |
+
("pyctcdecode", (is_pyctcdecode_available, PYCTCDECODE_IMPORT_ERROR)),
|
1435 |
+
("pytesseract", (is_pytesseract_available, PYTESSERACT_IMPORT_ERROR)),
|
1436 |
+
("sacremoses", (is_sacremoses_available, SACREMOSES_IMPORT_ERROR)),
|
1437 |
+
("pytorch_quantization", (is_pytorch_quantization_available, PYTORCH_QUANTIZATION_IMPORT_ERROR)),
|
1438 |
+
("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
|
1439 |
+
("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
|
1440 |
+
("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
|
1441 |
+
("tensorflow_probability", (is_tensorflow_probability_available, TENSORFLOW_PROBABILITY_IMPORT_ERROR)),
|
1442 |
+
("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
|
1443 |
+
("tensorflow_text", (is_tensorflow_text_available, TENSORFLOW_TEXT_IMPORT_ERROR)),
|
1444 |
+
("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
|
1445 |
+
("natten", (is_natten_available, NATTEN_IMPORT_ERROR)),
|
1446 |
+
("nltk", (is_nltk_available, NLTK_IMPORT_ERROR)),
|
1447 |
+
("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
|
1448 |
+
("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
|
1449 |
+
("torchvision", (is_torchvision_available, TORCHVISION_IMPORT_ERROR)),
|
1450 |
+
("vision", (is_vision_available, VISION_IMPORT_ERROR)),
|
1451 |
+
("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
|
1452 |
+
("accelerate", (is_accelerate_available, ACCELERATE_IMPORT_ERROR)),
|
1453 |
+
("oneccl_bind_pt", (is_ccl_available, CCL_IMPORT_ERROR)),
|
1454 |
+
("decord", (is_decord_available, DECORD_IMPORT_ERROR)),
|
1455 |
+
("cython", (is_cython_available, CYTHON_IMPORT_ERROR)),
|
1456 |
+
("jieba", (is_jieba_available, JIEBA_IMPORT_ERROR)),
|
1457 |
+
("peft", (is_peft_available, PEFT_IMPORT_ERROR)),
|
1458 |
+
("jinja", (is_jinja_available, JINJA_IMPORT_ERROR)),
|
1459 |
+
]
|
1460 |
+
)
|
1461 |
+
|
1462 |
+
|
1463 |
+
def requires_backends(obj, backends):
|
1464 |
+
if not isinstance(backends, (list, tuple)):
|
1465 |
+
backends = [backends]
|
1466 |
+
|
1467 |
+
name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
|
1468 |
+
|
1469 |
+
# Raise an error for users who might not realize that classes without "TF" are torch-only
|
1470 |
+
if "torch" in backends and "tf" not in backends and not is_torch_available() and is_tf_available():
|
1471 |
+
raise ImportError(PYTORCH_IMPORT_ERROR_WITH_TF.format(name))
|
1472 |
+
|
1473 |
+
# Raise the inverse error for PyTorch users trying to load TF classes
|
1474 |
+
if "tf" in backends and "torch" not in backends and is_torch_available() and not is_tf_available():
|
1475 |
+
raise ImportError(TF_IMPORT_ERROR_WITH_PYTORCH.format(name))
|
1476 |
+
|
1477 |
+
checks = (BACKENDS_MAPPING[backend] for backend in backends)
|
1478 |
+
failed = [msg.format(name) for available, msg in checks if not available()]
|
1479 |
+
if failed:
|
1480 |
+
raise ImportError("".join(failed))
|
1481 |
+
|
1482 |
+
|
1483 |
+
class DummyObject(type):
|
1484 |
+
"""
|
1485 |
+
Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
|
1486 |
+
`requires_backend` each time a user tries to access any method of that class.
|
1487 |
+
"""
|
1488 |
+
|
1489 |
+
def __getattribute__(cls, key):
|
1490 |
+
if key.startswith("_") and key != "_from_config":
|
1491 |
+
return super().__getattribute__(key)
|
1492 |
+
requires_backends(cls, cls._backends)
|
1493 |
+
|
1494 |
+
|
1495 |
+
def is_torch_fx_proxy(x):
|
1496 |
+
if is_torch_fx_available():
|
1497 |
+
import torch.fx
|
1498 |
+
|
1499 |
+
return isinstance(x, torch.fx.Proxy)
|
1500 |
+
return False
|
1501 |
+
|
1502 |
+
|
1503 |
+
class _LazyModule(ModuleType):
|
1504 |
+
"""
|
1505 |
+
Module class that surfaces all objects but only performs associated imports when the objects are requested.
|
1506 |
+
"""
|
1507 |
+
|
1508 |
+
# Very heavily inspired by optuna.integration._IntegrationModule
|
1509 |
+
# https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
|
1510 |
+
def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
|
1511 |
+
super().__init__(name)
|
1512 |
+
self._modules = set(import_structure.keys())
|
1513 |
+
self._class_to_module = {}
|
1514 |
+
for key, values in import_structure.items():
|
1515 |
+
for value in values:
|
1516 |
+
self._class_to_module[value] = key
|
1517 |
+
# Needed for autocompletion in an IDE
|
1518 |
+
self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
|
1519 |
+
self.__file__ = module_file
|
1520 |
+
self.__spec__ = module_spec
|
1521 |
+
self.__path__ = [os.path.dirname(module_file)]
|
1522 |
+
self._objects = {} if extra_objects is None else extra_objects
|
1523 |
+
self._name = name
|
1524 |
+
self._import_structure = import_structure
|
1525 |
+
|
1526 |
+
# Needed for autocompletion in an IDE
|
1527 |
+
def __dir__(self):
|
1528 |
+
result = super().__dir__()
|
1529 |
+
# The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
|
1530 |
+
# they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
|
1531 |
+
for attr in self.__all__:
|
1532 |
+
if attr not in result:
|
1533 |
+
result.append(attr)
|
1534 |
+
return result
|
1535 |
+
|
1536 |
+
def __getattr__(self, name: str) -> Any:
|
1537 |
+
if name in self._objects:
|
1538 |
+
return self._objects[name]
|
1539 |
+
if name in self._modules:
|
1540 |
+
value = self._get_module(name)
|
1541 |
+
elif name in self._class_to_module.keys():
|
1542 |
+
module = self._get_module(self._class_to_module[name])
|
1543 |
+
value = getattr(module, name)
|
1544 |
+
else:
|
1545 |
+
raise AttributeError(f"module {self.__name__} has no attribute {name}")
|
1546 |
+
|
1547 |
+
setattr(self, name, value)
|
1548 |
+
return value
|
1549 |
+
|
1550 |
+
def _get_module(self, module_name: str):
|
1551 |
+
try:
|
1552 |
+
return importlib.import_module("." + module_name, self.__name__)
|
1553 |
+
except Exception as e:
|
1554 |
+
raise RuntimeError(
|
1555 |
+
f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
|
1556 |
+
f" traceback):\n{e}"
|
1557 |
+
) from e
|
1558 |
+
|
1559 |
+
def __reduce__(self):
|
1560 |
+
return (self.__class__, (self._name, self.__file__, self._import_structure))
|
1561 |
+
|
1562 |
+
|
1563 |
+
class OptionalDependencyNotAvailable(BaseException):
|
1564 |
+
"""Internally used error class for signalling an optional dependency was not found."""
|
1565 |
+
|
1566 |
+
|
1567 |
+
def direct_transformers_import(path: str, file="__init__.py") -> ModuleType:
|
1568 |
+
"""Imports transformers directly
|
1569 |
+
|
1570 |
+
Args:
|
1571 |
+
path (`str`): The path to the source file
|
1572 |
+
file (`str`, optional): The file to join with the path. Defaults to "__init__.py".
|
1573 |
+
|
1574 |
+
Returns:
|
1575 |
+
`ModuleType`: The resulting imported module
|
1576 |
+
"""
|
1577 |
+
name = "transformers"
|
1578 |
+
location = os.path.join(path, file)
|
1579 |
+
spec = importlib.util.spec_from_file_location(name, location, submodule_search_locations=[path])
|
1580 |
+
module = importlib.util.module_from_spec(spec)
|
1581 |
+
spec.loader.exec_module(module)
|
1582 |
+
module = sys.modules[name]
|
1583 |
+
return module
|