File size: 15,891 Bytes
6a8d5c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
#!/usr/bin/env python
import os
import torch
import json
# from deepspeed_checkpoint import DeepSpeedCheckpoint
from deepspeed_to_megatron import _create_rank_checkpoint, parse_arguments
from typing import Dict
# the import was tested to work with this version
# https://github.com/huggingface/transformers/commit/0af901e83 if it diverges we may consider
# copying that version here instead
# from transformers.models.megatron_gpt2.convert_megatron_gpt2_checkpoint import convert_megatron_checkpoint
# from transformers import MistralConfig
from .configuration_kinoe import KinoeConfig
# ----------- temporal fix for relative import issue
ZERO_FILE_PREFIX = 'zero_pp_rank_'
LAYER_FILE_PREFIX = 'layer_'
MP_RANK_FILE_PREFIX = 'mp_rank_'
EMBEDDING_LAYER_INDEX = 0
FINAL_LAYER_NORM_INDEX = -1
ARGS_KEY = 'args'
ITERATION_KEY = 'iteration'
SEQUENTIAL_LAYERS = [
'input_layernorm.weight', 'input_layernorm.bias',
'self_attention.dense.bias',
'post_attention_layernorm.weight', 'post_attention_layernorm.bias',
'mlp.dense_4h_to_h.bias',
'position_embeddings.weight'
]
LAYER_CONCAT_DIM = {
'self_attention.dense.weight': 1,
'mlp.dense_4h_to_h.weight': 1
}
class DeepSpeedCheckpoint(object):
def __init__(self, dir, tp_degree=None, pp_degree=None, no_pp=False):
self.dir = dir
self.no_pp = no_pp
self.file_list = self._get_files(dir)
self.zero_files = self._get_files_with_prefix(self.file_list, ZERO_FILE_PREFIX)
self.layer_files = self._get_files_with_prefix(self.file_list, LAYER_FILE_PREFIX)
self.mp_rank_files = self._get_files_with_prefix(self.file_list, MP_RANK_FILE_PREFIX)
self.layer_keys = self._get_layer_keys()
self.layer_count = len(self.layer_keys)
if not self.no_pp:
self.original_tp_degree = len(self._get_files_with_prefix(self.layer_files, f'{LAYER_FILE_PREFIX}01'))
self.original_pp_degree = len(self.mp_rank_files) // self.original_tp_degree
else:
self.original_tp_degree = len(self.mp_rank_files)
self.original_pp_degree = 1
self.dp_degree = len(self.zero_files) // (self.original_pp_degree * self.original_tp_degree)
print(f"dp: {self.dp_degree}")
#self.dp_degree = 24
self.tp_degree = self.original_tp_degree if tp_degree is None else tp_degree
print(f"tp: {self.tp_degree}")
#self.tp_degree = 1
self.pp_degree = self.original_pp_degree if pp_degree is None else pp_degree
print(f"pp: {self.pp_degree}")
#self.pp_degree = 1
self.global_state = {}
self._sanity_check()
self.pp_to_transformer_map = self._build_pp_transformer_map()
self.transformer_file_map = self._build_transformer_file_map()
if not self.no_pp:
self.tp_to_embedding_map = self._build_tp_other_layer_map(EMBEDDING_LAYER_INDEX)
self.tp_to_final_norm_map = self._build_tp_other_layer_map(FINAL_LAYER_NORM_INDEX)
self._build_global_state()
def show_tp_embedding_map(self):
self._dump_mapping(self.tp_to_embedding_map, 'tp_to_embedding_layers')
def show_tp_final_norm_map(self):
self._dump_mapping(self.tp_to_final_norm_map, 'tp_to_final_norm_layers')
def show_pp_tranformer_map(self):
self._dump_mapping(self.pp_to_transformer_map, 'pp_to_tranformer_layers')
def show_transformer_file_map(self):
self._dump_mapping(self.transformer_file_map, 'rank_to_tranformer_files')
def _build_global_state(self):
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0)
self.global_state[ARGS_KEY] = sd.get(ARGS_KEY, None)
def get_iteration(self):
if not ITERATION_KEY in self.global_state:
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0)
return self.global_state[ITERATION_KEY]
def get_embedding_state(self, tp_index: int) -> Dict:
assert tp_index in self.tp_to_embedding_map.keys()
sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in self.tp_to_embedding_map[tp_index]]
sd = self._merge_state_dicts(sd_list)
return sd
def get_args(self):
if not ARGS_KEY in self.global_state:
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
self.global_state[ARGS_KEY] = sd.get(ARGS_KEY, None)
return self.global_state[ARGS_KEY]
def get_transformer_state(self, tp_index: int, pp_index: int) -> list:
assert tp_index < self.tp_degree
assert pp_index < self.pp_degree
t_list = []
for fname_list in self.transformer_file_map[(tp_index, pp_index)]:
sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in fname_list]
sd = self._merge_state_dicts(sd_list)
t_list.append(sd)
return t_list
def get_final_norm_state(self, tp_index:int) -> Dict:
assert tp_index in self.tp_to_final_norm_map.keys()
sd = torch.load(self.tp_to_final_norm_map[tp_index][0], map_location=torch.device('cpu'))
return sd
def _build_tp_other_layer_map(self, layer_index:int):
assert layer_index < len(self.layer_files)
layer_files = self._get_files_with_prefix(self.layer_files, self.layer_keys[layer_index])
layer_file_partitions = self._partition_data(layer_files, self.tp_degree)
data_map = {i:flist for i, flist in enumerate(layer_file_partitions)}
return data_map
def _build_pp_transformer_map(self):
data_map = {}
transformer_layers = self.layer_keys[1:-1]
layers_per_pp = len(transformer_layers) // self.pp_degree
data_map = {i:transformer_layers[i*layers_per_pp:(i+1)*layers_per_pp] for i in range(0, self.pp_degree)}
return data_map
def _dump_mapping(self, data_map, map_tag = None):
if map_tag is not None:
print(f'Dump mapping: {map_tag}')
for k, v in data_map.items():
print(f'{k} = {v}')
def _build_transformer_file_map(self):
transformer_layer_keys = self.layer_keys[1:-1]
file_map = {}
layers_per_pp = len(transformer_layer_keys) // self.pp_degree
for key_index, layer_key in enumerate(transformer_layer_keys):
pp_index = key_index // layers_per_pp
layer_files = self._get_files_with_prefix(self.layer_files, layer_key)
layer_file_partitions = self._partition_data(layer_files, self.tp_degree)
for tp_index in range(self.tp_degree):
map_key = (tp_index, pp_index)
if not map_key in file_map.keys():
file_map[map_key] = []
file_map[map_key].append(layer_file_partitions[tp_index])
return file_map
def _sanity_check(self):
assert len(self.mp_rank_files) % self.tp_degree == 0
assert len(self.zero_files) % (self.pp_degree * self.tp_degree) == 0
if not self.no_pp:
assert len(self.layer_keys) > 2
assert (len(self.layer_keys) - 2) % self.pp_degree == 0
def _get_files_with_prefix(self, all_files, prefix):
file_list = []
for file_path in all_files:
_, fname = os.path.split(file_path)
if fname.startswith(prefix):
file_list.append(file_path)
return sorted(file_list)
def validate_files(self):
for file in self.file_list:
if not os.path.isfile(file):
print(f'Error: {file} is not existent')
def _get_files(self, dir):
file_list = []
for root, dirs, files in os.walk(dir):
for file in files:
file_list.append(os.path.join(root, file))
return file_list
def _get_layer_keys(self):
key_set = set()
key_len = len(LAYER_FILE_PREFIX) + 2
for file_path in self.layer_files:
_, fname = os.path.split(file_path)
key_set.add(fname[:key_len])
return sorted(list(key_set))
def _partition_data(self, data_list, num_partitions):
num_elems = len(data_list)
assert num_elems % num_partitions == 0
partition_size = num_elems // num_partitions
partitions_list = [data_list[i:i+partition_size] for i in range(0, num_elems, partition_size)]
return partitions_list
def _merge_state_dicts(self, sd_list):
merged_sd = {}
for key in sd_list[0].keys():
if not key in SEQUENTIAL_LAYERS:
cat_dim = LAYER_CONCAT_DIM.get(key, 0)
merged_sd[key] = torch.cat([sd[key] for sd in sd_list], dim=cat_dim)
else:
merged_sd[key] = sd_list[0][key]
return merged_sd
# ------------------------------
def convert_wqkv(
qkv_w: torch.Tensor, # [7680, 5120]
n_heads: int = 40,
n_heads_kv: int = 10,
tp_size: int = 1,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
qkv_w (torch.Tensor):
layer_idx (int, optional):
n_heads (int, optional):
n_heads_kv (int, optional):
Returns:
tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
n_hidden = qkv_w.size(1)
# hidden_dim: 128
hidden_dim: int = n_hidden // n_heads * tp_size
# print(f"hidden_dim: {hidden_dim}")
# n_sq_per_kv: 4
n_qs_per_kv: int = n_heads // n_heads_kv
# print(f"n_qs_per_kv {n_qs_per_kv}")
# n_groups: 10
n_groups: int = qkv_w.size(0) // hidden_dim // (n_qs_per_kv + 2)
# print(f"n_groups: {n_groups}")
qkv_w: list[torch.Tensor] = list(torch.split(qkv_w, hidden_dim, dim=0))
wq, wk, wv = [], [], []
for _ in range(n_groups):
for qs in range(n_qs_per_kv):
wq.append(qkv_w[0])
del qkv_w[0]
wk.append(qkv_w[0])
del qkv_w[0]
wv.append(qkv_w[0])
del qkv_w[0]
assert len(qkv_w) == 0
wq = torch.concat(wq, dim=0)
wk = torch.concat(wk, dim=0)
wv = torch.concat(wv, dim=0)
return wq, wk, wv
def convert_megatron_checkpoint_custom(args, input_state_dict, config):
"""Custom function that converts megatron checkpoints to hf compatible ones for Mistral."""
output_state_dict = {}
# old versions did not store training args
ds_args = input_state_dict.get("args", None)
# check torch dtype
torch_dtype = torch.float32
if ds_args.bf16:
torch_dtype = torch.bfloat16
elif ds_args.fp16:
torch_dtype = torch.float16
# config の修正
if ds_args is not None:
config.torch_dtype = torch_dtype
model = input_state_dict["model"]
lm = model["language_model"]
embeddings = lm["embedding"]
encoder = lm["encoder"]
# model.embed_tokens.weight
output_state_dict["model.embed_tokens.weight"] = embeddings["word_embeddings"]['weight']
# layers
encoder_num_layers = config.num_hidden_layers
for i in range(encoder_num_layers):
# layers.{i}.input_layernorm.weight
output_state_dict[f"model.layers.{i}.input_layernorm.weight"] = encoder[f"layers.{i}.input_layernorm.weight"]
# size (7680, 5120)
qkv_weight = encoder[f"layers.{i}.self_attention.query_key_value.weight"]
q_proj, k_proj, v_proj = convert_wqkv(qkv_weight, config.num_attention_heads, config.num_key_value_heads)
# model.layers.{i}.self_attn.q_proj.weight
output_state_dict[f"model.layers.{i}.self_attn.q_proj.weight"] = q_proj
# model.layers.{i}.self_attn.k_proj.weight
output_state_dict[f"model.layers.{i}.self_attn.k_proj.weight"] = k_proj
# model.layers.{i}.self_attn.v_proj.weight
output_state_dict[f"model.layers.{i}.self_attn.v_proj.weight"] = v_proj
# model.layers.{i}.self_attn.o_proj.weight
output_state_dict[f"model.layers.{i}.self_attn.o_proj.weight"] = encoder[f"layers.{i}.self_attention.dense.weight"]
dense_h_to_4h_weight = encoder[f"layers.{i}.mlp.dense_h_to_4h.weight"]
split_size = dense_h_to_4h_weight.size(0) // 2
# model.layers.{i}.mlp.gate_proj.weight, model.layers.{i}.mlp.up_proj.weight
output_state_dict[f"model.layers.{i}.mlp.gate_proj.weight"], output_state_dict[f"model.layers.{i}.mlp.up_proj.weight"] = torch.split(dense_h_to_4h_weight, split_size, dim=0)
# model.layers.{i}.mlp.down_proj.weight
output_state_dict[f"model.layers.{i}.mlp.down_proj.weight"] = encoder[f"layers.{i}.mlp.dense_4h_to_h.weight"]
# model.layers.{i}.post_attention_layernorm.weight
output_state_dict[f"model.layers.{i}.post_attention_layernorm.weight"] = encoder[f"layers.{i}.post_attention_layernorm.weight"]
# model.norm.weight
output_state_dict["model.norm.weight"] = encoder[f"layers.{encoder_num_layers}.weight"]
# lm_head.weight
output_state_dict["lm_head.weight"] = model['word_embeddings_for_head']['weight']
return output_state_dict
#FIXME
def validate_conversion(ds_model, hf_model, dtype):
seed = 1234
tensor = torch.random((1, 2048), dtype=dtype)
# TODO
# do inference for each model
return
def load_from_hf_checkpoint(cp_path):
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(cp_path, device_map="auto")
return model
def main():
# this first part comes mainly from deepspeed_to_megatron.main
args = parse_arguments()
print(f'Converting DeepSpeed checkpoint in {args.input_folder} to HF Transformers checkpoint in {args.output_folder}')
ds_checkpoint = DeepSpeedCheckpoint(args.input_folder, args.target_tp, args.target_pp)
iteration = ds_checkpoint.get_iteration()
input_state_dict = _create_rank_checkpoint(ds_checkpoint, 0, 0, args.for_release)
# Get config wiht HF format.
config = KinoeConfig(
vocab_size=55424,
hidden_size=5120,
intermeditate_size=14336,
num_hidden_layers=24,
num_attention_heads=40,
num_key_value_heads=10,
hidden_act="silu",
max_position_embeddings=37268,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000, # refer to Megatron-DeepSpeed/megatron/model/rotay_pos_embedding.py
sliding_window=1024,
attention_dropout= 0.0,
max_sequence_length=2048,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
)
# Convert.
print("Converting to HF Checkpoint")
output_state_dict = convert_megatron_checkpoint_custom(args, input_state_dict, config)
basename = args.output_folder
os.makedirs(basename, exist_ok=True)
# Print the structure of converted state dict.
#if args.print_checkpoint_structure:
# recursive_print(None, output_state_dict)
# Store the config to file.
output_config_file = os.path.join(basename, "config.json")
output_config = config.to_dict()
output_config["architectures"] = ["KinoeForCausalLM"]
output_config["model_type"] = "gpt"
print(f'Saving config to "{output_config_file}"')
with open(output_config_file, "w") as f:
json.dump(output_config, f)
# Store the state_dict to file.
output_checkpoint_file = os.path.join(basename, "pytorch_model.bin")
print(f'Saving checkpoint to "{output_checkpoint_file}"')
torch.save(output_state_dict, output_checkpoint_file)
# load hf model
model = load_from_hf_checkpoint(basename)
print("Loaded hf model")
print("Now add tokenizer files and upload to the hub")
if __name__ == "__main__":
main()
|