File size: 43,057 Bytes
16872b9
 
 
440f295
16872b9
440f295
 
 
096b9b8
2d5b127
251e624
440f295
 
16872b9
 
 
 
 
 
440f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16872b9
440f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16872b9
 
 
 
 
 
 
 
440f295
 
 
 
 
 
 
 
 
 
 
 
16872b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16872b9
440f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16872b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16872b9
 
 
440f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16872b9
440f295
 
 
 
 
 
 
 
 
 
 
 
16872b9
440f295
 
 
16872b9
440f295
 
 
16872b9
440f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16872b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16872b9
440f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16872b9
440f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16872b9
 
440f295
16872b9
 
 
 
 
 
 
 
 
440f295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16872b9
440f295
16872b9
 
440f295
 
 
 
16872b9
 
 
440f295
16872b9
 
440f295
 
 
 
16872b9
440f295
 
16872b9
 
440f295
 
16872b9
440f295
 
16872b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440f295
16872b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440f295
16872b9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
import copy
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch

from transformers.configuration_utils import PretrainedConfig
from .import_utils import is_hqq_available, is_quanto_available
from transformers.utils import logging


if is_quanto_available():
    from quanto import QBitsTensor, qint2, qint4

if is_hqq_available():
    from hqq.core.quantize import Quantizer as HQQQuantizer

logger = logging.get_logger(__name__)


@dataclass
class Cache:
    """
    Base, abstract class for all caches. The actual data structure is specific to each subclass.
    """

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.

        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
                cache to be created.

        Return:
            A tuple containing the updated key and value states.
        """
        raise NotImplementedError("Make sure to implement `update` in a subclass.")

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # TODO: deprecate this function in favor of `cache_position`
        raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states, if there is any."""
        raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")

    def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
        """Given the sequence length of the new inputs, returns the usable length of the cache."""
        # Cache without size limit -> all cache is usable
        # Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
        #   length, we will need to evict part of the cache (and thus not all cache is usable)
        max_length = self.get_max_length()
        previous_seq_length = self.get_seq_length(layer_idx)
        if max_length is not None and previous_seq_length + new_seq_length > max_length:
            return max_length - new_seq_length
        return previous_seq_length

    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Reorders the cache for beam search, given the selected beam indices."""
        for layer_idx in range(len(self.key_cache)):
            device = self.key_cache[layer_idx].device
            self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
            device = self.value_cache[layer_idx].device
            self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))

    @property
    def seen_tokens(self):
        logger.warning_once(
            "The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
            "model input instead."
        )
        if hasattr(self, "_seen_tokens"):
            return self._seen_tokens
        else:
            return None


@dataclass
class CacheConfig:
    """
    Base class for cache configs
    """

    cache_implementation: None

    @classmethod
    def from_dict(cls, config_dict, **kwargs):
        """
        Constructs a CacheConfig instance from a dictionary of parameters.
        Args:
            config_dict (Dict[str, Any]): Dictionary containing configuration parameters.
            **kwargs: Additional keyword arguments to override dictionary values.
        Returns:
            CacheConfig: Instance of CacheConfig constructed from the dictionary.
        """
        config = cls(**config_dict)
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)
        return config

    # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_json_file
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
            use_diff (`bool`, *optional*, defaults to `True`):
                If set to `True`, only the difference between the config instance and the default
                `QuantizationConfig()` is serialized to JSON file.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
            config_dict = self.to_dict()
            json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

            writer.write(json_string)

    # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_dict
    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary. Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
        """
        return copy.deepcopy(self.__dict__)

    # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__iter__
    def __iter__(self):
        """allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin"""
        for attr, value in copy.deepcopy(self.__dict__).items():
            yield attr, value

    # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__repr__
    def __repr__(self):
        return f"{self.__class__.__name__} {self.to_json_string()}"

    def to_json_string(self):
        """
        Serializes this instance to a JSON formatted string.
        Returns:
            str: JSON formatted string representing the configuration instance.
        """
        return json.dumps(self.__dict__, indent=2) + "\n"

    # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.update
    def update(self, **kwargs):
        """
        Updates attributes of this class instance with attributes from `kwargs` if they match existing atributtes,
        returning all the unused kwargs.

        Args:
            kwargs (`Dict[str, Any]`):
                Dictionary of attributes to tentatively update this class.

        Returns:
            `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
        """
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(self, key):
                setattr(self, key, value)
                to_remove.append(key)

        # Remove all the attributes that were updated, without modifying the input dict
        unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
        return unused_kwargs


@dataclass
class QuantizedCacheConfig(CacheConfig):
    """
    Configuration class for quantized cache settings.

    Attributes:
        backend (`str`, *optional*, defaults to `"quanto"`):
            Backend to use when performing quantization, Can be one of [`quanto`, `HQQ`]
        nbits (`Optional[int]`, *optional*, defaults to 4):
            Number of bits, can be 2 or 4 for the `quanto` backend and one of [1, 2, 3, 4, 8] for the `HQQ` backend. Defaults to 2.
        axis_key (`int`, *optional*, defaults to 0):
            Axis over which to perform grouping for the key tensors. Can be [0, -1] for `quanto` backend and [0, 1] for `HQQ` backend.
        axis_value (`int`, *optional*, defaults to 0):
            Axis over which to perform grouping for the value tensors. Can be [0, -1] for `quanto` backend and [0, 1] for `HQQ` backend.
        q_group_size (`Optional[int]`, *optional*, defaults to 64):
            Size of the quantization group, should be a divisor of the model's hidden dimension.
            Defaults to 64.
        residual_length (`Optional[int]`, *optional*, defaults to 128):
            Length of the residual cache which will always be stored in original presicion.
            Defaults to 128.
        compute_dtype (`torch.dtype`, *optional*, defaults to `torch.float16`):
            The defualt dtype used for computations in the model. Keys and Values will be cast to this dtype after dequantization.
        device (`str`, *optional*, defaults to `"cpu"`):
            Device on which to peform computations, should be same as the model's device.
    """

    def __init__(
        self,
        backend: str = "quanto",
        nbits: Optional[int] = 4,
        axis_key: Optional[int] = 0,
        axis_value: Optional[int] = 0,
        q_group_size: Optional[int] = 64,
        residual_length: Optional[int] = 128,
        compute_dtype: Optional[torch.dtype] = torch.float16,
        device: Optional[str] = "cpu",
    ):
        self.backend = backend
        self.nbits = nbits
        self.axis_key = axis_key
        self.axis_value = axis_value
        self.q_group_size = q_group_size
        self.residual_length = residual_length
        self.compute_dtype = compute_dtype
        self.device = device

    def validate(self):
        """Validates if the arguments passed are correct"""

        incorrect_arg_msg = (
            "Some of the keys in `cache_config` are defined incorrectly. `{key}` should be {correct_value}` "
            "but found {found_value}"
        )
        # Check that the values are reasonable in general (nbits, axis)
        # Later in QuantizedCache init we check if they are supported for that particular backend
        if self.nbits not in [1, 2, 3, 4, 8]:
            raise ValueError(
                incorrect_arg_msg.format(
                    key="nbits",
                    correct_value="2 or 4 or 8",
                    found_value=self.nbits,
                ),
            )
        if self.q_group_size <= 0:
            raise ValueError(
                incorrect_arg_msg.format(
                    key="q_group_size",
                    correct_value="a positive integer",
                    found_value=self.q_group_size,
                ),
            )
        if self.residual_length < 0:
            raise ValueError(
                incorrect_arg_msg.format(
                    key="residual_length",
                    correct_value="a positive integer",
                    found_value=self.residual_length,
                ),
            )

        if self.axis_key not in [0, 1, -1]:
            raise ValueError(
                incorrect_arg_msg.format(
                    key="axis_key",
                    correct_value="`1` or `0`, `-1`",
                    found_value=self.axis_key,
                ),
            )

        if self.axis_value not in [0, 1, -1]:
            raise ValueError(
                incorrect_arg_msg.format(
                    key="axis_value",
                    correct_value="`1` or `0` or `-1`",
                    found_value=self.axis_value,
                ),
            )


class DynamicCache(Cache):
    """
    A cache that grows dynamically as more tokens are generated. This is the default for generative models.

    It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
    `[batch_size, num_heads, seq_len, head_dim]`.
    """

    def __init__(self) -> None:
        self.key_cache: List[torch.Tensor] = []
        self.value_cache: List[torch.Tensor] = []
        self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen

    def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
        """
        Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
        sequence length.
        """
        if layer_idx < len(self):
            return (self.key_cache[layer_idx], self.value_cache[layer_idx])
        else:
            raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")

    def __iter__(self):
        """
        Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
        keys and values
        """
        for layer_idx in range(len(self)):
            yield (self.key_cache[layer_idx], self.value_cache[layer_idx])

    def __len__(self):
        """
        Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
        to the number of layers in the model.
        """
        return len(self.key_cache)

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.

        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.

        Return:
            A tuple containing the updated key and value states.
        """
        # Update the number of seen tokens
        if layer_idx == 0:
            self._seen_tokens += key_states.shape[-2]

        # Update the cache
        if len(self.key_cache) <= layer_idx:
            self.key_cache.append(key_states)
            self.value_cache.append(value_states)
        else:
            self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
            self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)

        return self.key_cache[layer_idx], self.value_cache[layer_idx]

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # TODO: deprecate this function in favor of `cache_position`
        if len(self.key_cache) <= layer_idx:
            return 0
        return self.key_cache[layer_idx].shape[-2]

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
        return None

    def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
        """Converts the `DynamicCache` instance into the its equivalent in the legacy cache format."""
        legacy_cache = ()
        for layer_idx in range(len(self)):
            legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
        return legacy_cache

    @classmethod
    def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
        """Converts a cache in the legacy cache format into an equivalent `DynamicCache`."""
        cache = cls()
        if past_key_values is not None:
            for layer_idx in range(len(past_key_values)):
                key_states, value_states = past_key_values[layer_idx]
                cache.update(key_states, value_states, layer_idx)
        return cache


class QuantizedCache(DynamicCache):
    """
    A quantizer cache similar to what is described in the [KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache paper](https://arxiv.org/abs/2402.02750).
    It allows the model to generate longer sequence length without allocating too much memory for Key and Value cache by applying quantization.

    The cache has two types of storage, one for original precision and one for the quantized cache. A `residual length` is set as a maximum capacity for the
    original precision cache. When the length goes beyond maximum capacity, the original precision cache is discarded and moved into the quantized cache. The
    quantization is done per-channel with a set `q_group_size` for both Keys and Values, in contrast to what was described in the paper.

    It stores Keys and Values a list of quantized tensors (tuples in case we need to store metadata), one for each layer. Additionally, it stores the Key and
    Value in original precision states as a list of tensors, one for each layer. The size of each tensor
    is `[batch_size, num_heads, seq_len - residual_length, head_dim]`
    """

    def __init__(self, cache_config: QuantizedCacheConfig) -> None:
        self._quantized_key_cache: List[torch.Tensor] = []
        self._quantized_value_cache: List[torch.Tensor] = []

        self.nbits = cache_config.nbits
        self.residual_length = cache_config.residual_length
        self.q_group_size = cache_config.q_group_size
        self.axis_key = cache_config.axis_key
        self.axis_value = cache_config.axis_value
        self.compute_dtype = cache_config.compute_dtype
        self.device = cache_config.device

        super().__init__()

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Update the number of seen tokens
        if layer_idx == 0:
            self._seen_tokens += key_states.shape[-2]

        if len(self.key_cache) <= layer_idx:
            self._quantized_key_cache.append(self._quantize(key_states.contiguous(), axis=self.axis_key))
            self._quantized_value_cache.append(self._quantize(value_states.contiguous(), axis=self.axis_value))
            self.key_cache.append(torch.zeros(0, dtype=key_states.dtype, device=key_states.device))
            self.value_cache.append(torch.zeros(0, dtype=key_states.dtype, device=key_states.device))
            keys_to_return, values_to_return = key_states, value_states
        else:
            dequant_key = self._dequantize(self._quantized_key_cache[layer_idx])
            dequant_value = self._dequantize(self._quantized_value_cache[layer_idx])
            keys_to_return = [dequant_key, self.key_cache[layer_idx], key_states]
            values_to_return = [dequant_value, self.value_cache[layer_idx], value_states]

            keys_to_return = torch.cat(keys_to_return, dim=-2)
            values_to_return = torch.cat(values_to_return, dim=-2)
            if (
                self.key_cache[layer_idx].dim() == 4
                and self.key_cache[layer_idx].shape[-2] + 1 >= self.residual_length
            ):
                self._quantized_key_cache[layer_idx] = self._quantize(keys_to_return.contiguous(), axis=self.axis_key)
                self._quantized_value_cache[layer_idx] = self._quantize(
                    values_to_return.contiguous(), axis=self.axis_value
                )
                self.key_cache[layer_idx] = torch.zeros(0, dtype=key_states.dtype, device=key_states.device)
                self.value_cache[layer_idx] = torch.zeros(0, dtype=key_states.dtype, device=key_states.device)
            else:
                self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
                self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)

        return keys_to_return, values_to_return

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        if len(self.key_cache) <= layer_idx:
            return 0
        # since we cannot get the seq_length of each layer directly and rely on `_seen_tokens` which is
        # updated every "layer_idx" == 0, this is a hack to get the actual seq_length for the given layer_idx
        # this part of code otherwise fails when used to verify attn_weight shape in some models
        return self._seen_tokens if layer_idx == 0 else self._seen_tokens - 1

    def _quantize(self, tensor, axis):
        """Quantizes a key/value using a defined quantization method."""
        raise NotImplementedError("Make sure to implement `_quantize` in a subclass.")

    def _dequantize(self, q_tensor):
        """Dequantizes back the tensor that was quantized by `self._quantize()`"""
        raise NotImplementedError("Make sure to implement `_dequantize` in a subclass.")


class QuantoQuantizedCache(QuantizedCache):
    """
    Quantized Cache class that uses `quanto` as a backend to perform quantization. Current implementation supports `int2` and `int4` dtypes only.

    Parameters:
        cache_config (`QuantizedCacheConfig`,):
            A configuration containing all the arguments to be used by the quantizer, including axis, qtype and group size.
    """

    def __init__(self, cache_config: CacheConfig) -> None:
        super().__init__(cache_config)
        if self.nbits not in [2, 4]:
            raise ValueError(f"`nbits` for `quanto` backend has to be one of [`2`, `4`] but got {self.nbits}")

        if self.axis_key not in [0, -1]:
            raise ValueError(f"`axis_key` for `quanto` backend has to be one of [`0`, `-1`] but got {self.axis_key}")

        if self.axis_value not in [0, -1]:
            raise ValueError(
                f"`axis_value` for `quanto` backend has to be one of [`0`, `-1`] but got {self.axis_value}"
            )

        self.qtype = qint4 if self.nbits == 4 else qint2

    def _quantize(self, tensor, axis):
        qtensor = QBitsTensor.quantize(tensor, axis=axis, qtype=self.qtype, group_size=self.q_group_size)
        return qtensor

    def _dequantize(self, qtensor):
        return qtensor.dequantize()


class HQQQuantizedCache(QuantizedCache):
    """
    Quantized Cache class that uses `HQQ` as a backend to perform quantization. Current implementation supports `int2`, `int4`, `int8` dtypes.

    Parameters:
        cache_config (`QuantizedCacheConfig`,):
            A configuration containing all the arguments to be used by the quantizer, including axis, qtype and group size.
    """

    def __init__(self, cache_config: CacheConfig) -> None:
        super().__init__(cache_config)
        if self.nbits not in [1, 2, 3, 4, 8]:
            raise ValueError(
                f"`nbits` for `HQQ` backend has to be one of [`1`, `2`, `3`, `4`, `8`] but got {self.nbits}"
            )

        if self.axis_key not in [0, 1]:
            raise ValueError(f"`axis_key` for `HQQ` backend has to be one of [`0`, `1`] but got {self.axis_key}")

        if self.axis_value not in [0, 1]:
            raise ValueError(f"`axis_value` for `HQQ` backend has to be one of [`0`, `1`] but got {self.axis_value}")

        self.quantizer = HQQQuantizer

    def _quantize(self, tensor, axis):
        qtensor, meta = self.quantizer.quantize(
            tensor,
            axis=axis,
            device=self.device,
            compute_dtype=self.compute_dtype,
            nbits=self.nbits,
            group_size=self.q_group_size,
        )
        meta["compute_dtype"] = self.compute_dtype
        self.quantizer.cuda(qtensor, meta=meta, device=self.device)  # Move to device and cast to dtype
        return qtensor, meta

    def _dequantize(self, qtensor):
        quant_tensor, meta = qtensor
        tensor = self.quantizer.dequantize(quant_tensor, meta)
        return tensor


class SinkCache(Cache):
    """
    A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
    generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
    tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.

    It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
    `[batch_size, num_heads, seq_len, head_dim]`.

    Parameters:
        window_length (`int`):
            The length of the context window.
        num_sink_tokens (`int`):
            The number of sink tokens. See the original paper for more information.
    """

    def __init__(self, window_length: int, num_sink_tokens: int) -> None:
        self.key_cache: List[torch.Tensor] = []
        self.value_cache: List[torch.Tensor] = []
        self.window_length = window_length
        self.num_sink_tokens = num_sink_tokens
        self.cos_sin_rerotation_cache = {}
        self._cos_cache = None
        self._sin_cache = None
        self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen

    @staticmethod
    def _rotate_half(x):
        x1 = x[..., : x.shape[-1] // 2]
        x2 = x[..., x.shape[-1] // 2 :]
        return torch.cat((-x2, x1), dim=-1)

    def _apply_key_rotary_pos_emb(
        self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
    ) -> torch.Tensor:
        rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
        return rotated_key_states

    def _get_rerotation_cos_sin(
        self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if key_states.shape[-2] not in self.cos_sin_rerotation_cache:
            # Upcast to float32 temporarily for better accuracy
            cos = cos.to(torch.float32)
            sin = sin.to(torch.float32)

            # Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
            original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
            shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
            original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
            shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
            rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
            rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin

            self.cos_sin_rerotation_cache[key_states.shape[-2]] = (
                rerotation_cos.to(key_states.dtype).unsqueeze(0),
                rerotation_sin.to(key_states.dtype).unsqueeze(0),
            )
        return self.cos_sin_rerotation_cache[key_states.shape[-2]]

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # TODO: deprecate this function in favor of `cache_position`
        # Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
        if len(self.key_cache) <= layer_idx:
            return 0
        return self.key_cache[layer_idx].shape[-2]

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states."""
        return self.window_length

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.

        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
                `cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
                rotation as the tokens are shifted.

        Return:
            A tuple containing the updated key and value states.
        """
        # Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
        # with partially rotated position embeddings, like Phi or Persimmon.
        sin = cache_kwargs.get("sin")
        cos = cache_kwargs.get("cos")
        partial_rotation_size = cache_kwargs.get("partial_rotation_size")
        using_rope = cos is not None and sin is not None

        # Update the number of seen tokens
        if layer_idx == 0:
            self._seen_tokens += key_states.shape[-2]

        # Update the sin/cos cache, which holds sin/cos values for all possible positions
        if using_rope and layer_idx == 0:
            # BC: some models still pass `sin`/`cos` with 2 dims. In those models, they are the full sin/cos. Remove
            # after all RoPE models have a llama-like cache utilization.
            if cos.dim() == 2:
                self._cos_cache = cos
                self._sin_cache = sin
            else:
                if self._cos_cache is None:
                    self._cos_cache = cos[0, ...]
                    self._sin_cache = sin[0, ...]
                elif self._cos_cache.shape[0] < self.window_length:
                    self._cos_cache = torch.cat([self._cos_cache, cos[0, ...]], dim=0)
                    self._sin_cache = torch.cat([self._sin_cache, sin[0, ...]], dim=0)

        # [bsz, num_heads, seq_len, head_dim]
        if len(self.key_cache) <= layer_idx:
            # Empty cache
            self.key_cache.append(key_states)
            self.value_cache.append(value_states)

        elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
            # Growing cache
            self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
            self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)

        else:
            # Shifting cache
            keys_to_keep = self.key_cache[layer_idx][
                :, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
            ]

            # On RoPE models, we need to recompute the Key rotation as the tokens are shifted
            if using_rope:
                rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
                    key_states, self._cos_cache[: self.window_length], self._sin_cache[: self.window_length]
                )
                if partial_rotation_size is not None:
                    keys_to_keep, keys_pass = (
                        keys_to_keep[..., :partial_rotation_size],
                        keys_to_keep[..., partial_rotation_size:],
                    )
                keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
                if partial_rotation_size is not None:
                    keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)

            # Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
            sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
            self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)

            sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
            values_to_keep = self.value_cache[layer_idx][
                :, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
            ]
            self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)

        return self.key_cache[layer_idx], self.value_cache[layer_idx]


class StaticCache(Cache):
    """
    Static Cache class to be used with `torch.compile(model)`.

    Parameters:
        config (`PretrainedConfig):
            The configuration file defining the shape-related attributes required to initialize the static cache.
        max_batch_size (`int`):
            The maximum batch size with which the model will be used.
        max_cache_len (`int`):
            The maximum sequence length with which the model will be used.
        device (`torch.device`):
            The device on which the cache should be initialized. Should be the same as the layer.
        dtype (*optional*, defaults to `torch.float32`):
            The default `dtype` to use when initializing the layer.
    """

    def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
        super().__init__()
        self.max_batch_size = max_batch_size
        self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
        # Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
        self.head_dim = (
            config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
        )

        self.dtype = dtype if dtype is not None else torch.float32
        self.num_key_value_heads = (
            config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
        )

        self.key_cache: List[torch.Tensor] = []
        self.value_cache: List[torch.Tensor] = []
        cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
        for _ in range(config.num_hidden_layers):
            # Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
            # breaks when updating the cache.
            new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
            new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
            torch._dynamo.mark_static_address(new_layer_key_cache)
            torch._dynamo.mark_static_address(new_layer_value_cache)
            self.key_cache.append(new_layer_key_cache)
            self.value_cache.append(new_layer_value_cache)

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
        It is VERY important to index using a tensor, otherwise you introduce a copy to the device.

        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. The `StaticCache` needs the `cache_position` input
                to know how where to write in the cache.

        Return:
            A tuple containing the updated key and value states.
        """
        cache_position = cache_kwargs.get("cache_position")
        k_out = self.key_cache[layer_idx]
        v_out = self.value_cache[layer_idx]

        k_out[:, :, cache_position] = key_states
        v_out[:, :, cache_position] = value_states

        return k_out, v_out

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states that were seen by the model."""
        # Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
        # limit the check to the first batch member and head dimension.
        # TODO: deprecate this function in favor of `cache_position`
        return (self.key_cache[layer_idx][0, 0].any(dim=-1)).sum()

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states."""
        return self.max_cache_len

    def reset(self):
        """Resets the cache values while preserving the objects"""
        for layer_idx in range(len(self.key_cache)):
            # In-place ops prevent breaking the static address
            self.key_cache[layer_idx].zero_()
            self.value_cache[layer_idx].zero_()


class SlidingWindowCache(Cache):
    """
    Sliding Window Cache class to be used with `torch.compile` for models like Mistral that support sliding window attention.
    Every time when we try to update the cache, we compute the `indices` based on `cache_position >= self.config.sliding_window_size - 1`,
    if true(which means the cache can not hold all the old key value states and new states together because of the sliding window constraint),
    we need to do a cycle shift based on `indices` to replace the oldest states by the new key value states passed in.

    The `to_shift` is only true once we are above sliding_window_size. Thus with `sliding_window_size==64`:

    indices = (slicing + to_shift[-1].int()-1) % self.config.sliding_window_size
    tensor([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
        19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
        37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
        55, 56, 57, 58, 59, 60, 61, 62, 63,  0])

    We overwrite the cache using these, then we always write at cache_position (clamped to `sliding_window_size`)

    Parameters:
        config (`PretrainedConfig):
            The configuration file defining the shape-related attributes required to initialize the static cache.
        max_batch_size (`int`):
            The maximum batch size with which the model will be used.
        max_cache_len (`int`):
            The maximum sequence length with which the model will be used.
        device (`torch.device`):
            The device on which the cache should be initialized. Should be the same as the layer.
        dtype (*optional*, defaults to `torch.float32`):
            The default `dtype` to use when initializing the layer.
    """

    def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
        if not hasattr(config, "sliding_window") or config.sliding_window is None:
            raise ValueError(
                "Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
                "sliding window attention, please check if there is a `sliding_window` field in the model "
                "config and it's not set to None."
            )

        super().__init__()
        self.max_batch_size = max_batch_size
        # take the minimum of max_cache_len and config.sliding_window so that we allocate less memory
        # when we do short-sentence generation
        self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
        self.model_sliding_window_size = config.sliding_window
        self.sliding_window_size = min(self.max_cache_len, self.model_sliding_window_size)
        # Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
        self.head_dim = (
            config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
        )

        self.dtype = dtype if dtype is not None else torch.float32
        self.num_key_value_heads = (
            config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
        )

        cache_shape = (
            config.num_hidden_layers,
            max_batch_size,
            self.num_key_value_heads,
            self.sliding_window_size,
            self.head_dim,
        )

        self.key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
        self.value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)

        torch._dynamo.mark_static_address(self.key_cache)
        torch._dynamo.mark_static_address(self.value_cache)

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor]:
        cache_position = cache_kwargs.get("cache_position")
        k_out = self.key_cache[layer_idx]
        v_out = self.value_cache[layer_idx]

        # assume this only happens in prefill phase when prompt length > sliding_window_size
        if cache_position.shape[0] > self.sliding_window_size:
            k_out = key_states[:, :, -self.sliding_window_size :, :]
            v_out = value_states[:, :, -self.sliding_window_size :, :]
            self.key_cache[layer_idx] = k_out
            self.value_cache[layer_idx] = v_out
            # we should return the whole states instead of k_out, v_out to take the whole prompt
            # into consideration when building kv cache instead of just throwing away tokens outside of the window
            return key_states, value_states

        slicing = torch.ones(self.sliding_window_size, dtype=torch.long, device=value_states.device).cumsum(0)
        cache_position = cache_position.clamp(0, self.sliding_window_size - 1)
        to_shift = cache_position >= self.sliding_window_size - 1
        indices = (slicing + to_shift[-1].int() - 1) % self.sliding_window_size

        k_out = k_out[:, :, indices]
        v_out = v_out[:, :, indices]

        k_out[:, :, cache_position] = key_states
        v_out[:, :, cache_position] = value_states

        self.key_cache[layer_idx] = k_out
        self.value_cache[layer_idx] = v_out

        return k_out, v_out

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        # assume this will be called only in the first generation step
        # `cache_postion` will be used in other cases
        return 0

    def get_max_length(self) -> Optional[int]:
        # in theory there is no limit because the sliding window size is fixed
        # no matter how long the sentence is
        return None

    def reset(self):
        self.key_cache.zero_()
        self.value_cache.zero_()