File size: 2,263 Bytes
261e1a6 e5a4892 261e1a6 e5a4892 261e1a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: laryngitis-iau
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# laryngitis-iau
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4987
- Accuracy: 0.8182
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6993 | 1.0 | 6 | 0.6959 | 0.4545 |
| 0.6752 | 2.0 | 12 | 0.7107 | 0.4545 |
| 0.6102 | 3.0 | 18 | 0.6545 | 0.6364 |
| 0.5892 | 4.0 | 24 | 0.7614 | 0.4545 |
| 0.5662 | 5.0 | 30 | 0.6371 | 0.6364 |
| 0.52 | 6.0 | 36 | 0.6439 | 0.6364 |
| 0.466 | 7.0 | 42 | 0.6470 | 0.6818 |
| 0.4362 | 8.0 | 48 | 0.6353 | 0.6364 |
| 0.4044 | 9.0 | 54 | 0.5818 | 0.7273 |
| 0.3732 | 10.0 | 60 | 0.5644 | 0.7273 |
| 0.3394 | 11.0 | 66 | 0.5402 | 0.7727 |
| 0.3181 | 12.0 | 72 | 0.5995 | 0.7273 |
| 0.3092 | 13.0 | 78 | 0.5288 | 0.7727 |
| 0.2645 | 14.0 | 84 | 0.5135 | 0.7727 |
| 0.246 | 15.0 | 90 | 0.4987 | 0.8182 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.12.0
- Tokenizers 0.15.1
|