AnanyaCoder
commited on
Commit
•
9015d84
1
Parent(s):
8fd03d3
Update README.md
Browse files
README.md
CHANGED
@@ -5,12 +5,17 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
|
|
|
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
# {
|
12 |
|
13 |
-
|
|
|
|
|
14 |
|
15 |
<!--- Describe your model here -->
|
16 |
|
@@ -25,50 +30,29 @@ pip install -U sentence-transformers
|
|
25 |
Then you can use the model like this:
|
26 |
|
27 |
```python
|
28 |
-
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
-
|
31 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
-
embeddings = model.encode(sentences)
|
33 |
-
print(embeddings)
|
34 |
-
```
|
35 |
|
36 |
|
|
|
37 |
|
38 |
-
|
39 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
-
|
41 |
-
```python
|
42 |
-
from transformers import AutoTokenizer, AutoModel
|
43 |
-
import torch
|
44 |
-
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
50 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
51 |
|
|
|
|
|
52 |
|
53 |
-
#
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
58 |
-
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
59 |
|
60 |
-
# Tokenize sentences
|
61 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
62 |
|
63 |
-
# Compute token embeddings
|
64 |
-
with torch.no_grad():
|
65 |
-
model_output = model(**encoded_input)
|
66 |
-
|
67 |
-
# Perform pooling. In this case, mean pooling.
|
68 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
69 |
-
|
70 |
-
print("Sentence embeddings:")
|
71 |
-
print(sentence_embeddings)
|
72 |
```
|
73 |
|
74 |
|
@@ -77,7 +61,7 @@ print(sentence_embeddings)
|
|
77 |
|
78 |
<!--- Describe how your model was evaluated -->
|
79 |
|
80 |
-
For an automated evaluation of this model, see
|
81 |
|
82 |
|
83 |
## Training
|
@@ -123,4 +107,8 @@ SentenceTransformer(
|
|
123 |
|
124 |
## Citing & Authors
|
125 |
|
126 |
-
<!--- Describe where people can find more information -->
|
|
|
|
|
|
|
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
- MT Evaluation
|
9 |
+
- Metrics
|
10 |
+
- Evaluation
|
11 |
|
12 |
---
|
13 |
|
14 |
+
# {AnanyaCoder/XLsim_en-de}
|
15 |
|
16 |
+
XLSim: MT Evaluation Metric based on Siamese Architecture
|
17 |
+
|
18 |
+
XLsim is a supervised reference-based metric that regresses on human scores provided by WMT (2017-2022). Using a cross-lingual language model XLM-RoBERTa-base [ https://huggingface.co/xlm-roberta-base ] , we train a supervised model using a Siamese network architecture with CosineSimilarityLoss.
|
19 |
|
20 |
<!--- Describe your model here -->
|
21 |
|
|
|
30 |
Then you can use the model like this:
|
31 |
|
32 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
+
from sentence_transformers import SentenceTransformer,losses, models, util
|
36 |
|
37 |
+
metric_model = SentenceTransformer('{MODEL_NAME}')
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
#Compute embedding for both lists
|
40 |
+
mt_samples = ['This is a mt sentence1','This is a mt sentence2']
|
41 |
+
ref_samples = ['This is a ref sentence1','This is a ref sentence2']
|
|
|
|
|
42 |
|
43 |
+
mtembeddings = metric_model.encode(mt_samples, convert_to_tensor=True)
|
44 |
+
refembeddings = metric_model.encode(ref_samples, convert_to_tensor=True)
|
45 |
|
46 |
+
#Compute cosine-similarities
|
47 |
+
cosine_scores_refmt = util.cos_sim(mtembeddings, refembeddings)
|
48 |
+
#cosine_scores_srcmt = util.cos_sim(mtembeddings, srcembeddings) #qe
|
49 |
+
metric_model_scores = []
|
50 |
+
for i in range(len(mt_samples)):
|
51 |
+
metric_model_scores.append(cosine_scores_refmt[i][i].tolist())
|
52 |
|
53 |
+
scores = metric_model_scores
|
|
|
|
|
54 |
|
|
|
|
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
```
|
57 |
|
58 |
|
|
|
61 |
|
62 |
<!--- Describe how your model was evaluated -->
|
63 |
|
64 |
+
For an automated evaluation of this model, see: [WMT23 Metrics Shared Task findings](https://aclanthology.org/2023.wmt-1.51.pdf)
|
65 |
|
66 |
|
67 |
## Training
|
|
|
107 |
|
108 |
## Citing & Authors
|
109 |
|
110 |
+
<!--- Describe where people can find more information -->
|
111 |
+
[MEE4 and XLsim : IIIT HYD’s Submissions’ for WMT23 Metrics Shared Task](https://aclanthology.org/2023.wmt-1.66) (Mukherjee & Shrivastava, WMT 2023)
|
112 |
+
|
113 |
+
|
114 |
+
|