File size: 2,183 Bytes
3bc6964 c566df8 536f16b c566df8 e5bbfad c566df8 e5bbfad 3bc6964 536f16b 3bc6964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
# ALBERT for Math AR
This model is further pre-trained on the Mathematics StackExchange questions and answers. It is based on Albert base v2 and uses the same tokenizer. In addition to pre-training the model was finetuned on Math Question Answer Retrieval. The sequence classification head is trained to output a relevance score if you input the question as the first segment and the answer as the second segment. You can use the relevance score to rank different answers for retrieval.
## Usage
```python
# based on https://huggingface.co/docs/transformers/main/en/task_summary#sequence-classification
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
model = AutoModelForSequenceClassification.from_pretrained("AnReu/albert-for-math-ar-base-ft")
classes = ["non relevant", "relevant"]
sequence_0 = "How can I calculate x in $3x = 5$"
sequence_1 = "Just divide by 3: $x = \\frac{5}{3}$"
sequence_2 = "The general rule for squaring a sum is $(a+b)^2=a^2+2ab+b^2$"
# The tokenizer will automatically add any model specific separators (i.e. <CLS> and <SEP>) and tokens to
# the sequence, as well as compute the attention masks.
irrelevant = tokenizer(sequence_0, sequence_2, return_tensors="pt")
relevant = tokenizer(sequence_0, sequence_1, return_tensors="pt")
irrelevant_classification_logits = model(**irrelevant).logits
relevant_classification_logits = model(**relevant).logits
irrelevant_results = torch.softmax(irrelevant_classification_logits, dim=1).tolist()[0]
relevant_results = torch.softmax(relevant_classification_logits, dim=1).tolist()[0]
# Should be irrelevant
for i in range(len(classes)):
print(f"{classes[i]}: {int(round(irrelevant_results[i] * 100))}%")
# Should be relevant
for i in range(len(classes)):
print(f"{classes[i]}: {int(round(relevant_results[i] * 100))}%")
```
## Reference
If you use this model, please consider referencing our paper:
```bibtex
@inproceedings{reusch2021tu_dbs,
title={TU\_DBS in the ARQMath Lab 2021, CLEF},
author={Reusch, Anja and Thiele, Maik and Lehner, Wolfgang},
year={2021},
organization={CLEF}
}
```
|