--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - vivos metrics: - wer model-index: - name: working results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: vivos type: vivos config: default split: None args: default metrics: - name: Wer type: wer value: 0.19310434387377443 --- # working This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset. It achieves the following results on the evaluation set: - Loss: 0.2735 - Wer: 0.1931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.8333 | 1.0274 | 300 | 3.7834 | 1.0 | | 2.3412 | 2.0548 | 600 | 0.8215 | 0.5481 | | 0.6754 | 3.0822 | 900 | 0.4963 | 0.3560 | | 0.4809 | 4.1096 | 1200 | 0.3978 | 0.2980 | | 0.395 | 5.1370 | 1500 | 0.3535 | 0.2613 | | 0.3453 | 6.1644 | 1800 | 0.3192 | 0.2318 | | 0.3024 | 7.1918 | 2100 | 0.2948 | 0.2166 | | 0.2683 | 8.2192 | 2400 | 0.2844 | 0.2043 | | 0.2468 | 9.2466 | 2700 | 0.2785 | 0.1947 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1