update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: xlm-roberta-base-conll2003
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# xlm-roberta-base-conll2003
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1579
|
23 |
+
- Precision: 0.8794
|
24 |
+
- Recall: 0.8745
|
25 |
+
- F1: 0.8769
|
26 |
+
- Accuracy: 0.9758
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 32
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 15
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 430 | 0.1374 | 0.8043 | 0.7966 | 0.8004 | 0.9613 |
|
58 |
+
| 0.2862 | 2.0 | 860 | 0.1093 | 0.8384 | 0.8482 | 0.8433 | 0.9695 |
|
59 |
+
| 0.1043 | 3.0 | 1290 | 0.1121 | 0.8448 | 0.8556 | 0.8502 | 0.9708 |
|
60 |
+
| 0.0689 | 4.0 | 1720 | 0.1094 | 0.8635 | 0.8650 | 0.8643 | 0.9737 |
|
61 |
+
| 0.0473 | 5.0 | 2150 | 0.1225 | 0.8665 | 0.8625 | 0.8645 | 0.9736 |
|
62 |
+
| 0.0342 | 6.0 | 2580 | 0.1186 | 0.8722 | 0.8730 | 0.8726 | 0.9745 |
|
63 |
+
| 0.0245 | 7.0 | 3010 | 0.1292 | 0.8802 | 0.8717 | 0.8759 | 0.9755 |
|
64 |
+
| 0.0245 | 8.0 | 3440 | 0.1309 | 0.8832 | 0.8689 | 0.8760 | 0.9749 |
|
65 |
+
| 0.0177 | 9.0 | 3870 | 0.1388 | 0.8712 | 0.8717 | 0.8715 | 0.9743 |
|
66 |
+
| 0.0135 | 10.0 | 4300 | 0.1466 | 0.8699 | 0.8728 | 0.8714 | 0.9752 |
|
67 |
+
| 0.0103 | 11.0 | 4730 | 0.1486 | 0.8716 | 0.8747 | 0.8731 | 0.9756 |
|
68 |
+
| 0.0081 | 12.0 | 5160 | 0.1521 | 0.8789 | 0.8736 | 0.8762 | 0.9759 |
|
69 |
+
| 0.007 | 13.0 | 5590 | 0.1546 | 0.8804 | 0.8734 | 0.8769 | 0.9756 |
|
70 |
+
| 0.0053 | 14.0 | 6020 | 0.1552 | 0.8750 | 0.8732 | 0.8741 | 0.9756 |
|
71 |
+
| 0.0053 | 15.0 | 6450 | 0.1579 | 0.8794 | 0.8745 | 0.8769 | 0.9758 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.27.0.dev0
|
77 |
+
- Pytorch 1.13.1+cu116
|
78 |
+
- Datasets 2.8.0
|
79 |
+
- Tokenizers 0.13.2
|