Amir13 commited on
Commit
677159c
1 Parent(s): 1894896

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: xlm-roberta-base-conll2003
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # xlm-roberta-base-conll2003
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1579
23
+ - Precision: 0.8794
24
+ - Recall: 0.8745
25
+ - F1: 0.8769
26
+ - Accuracy: 0.9758
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 430 | 0.1374 | 0.8043 | 0.7966 | 0.8004 | 0.9613 |
58
+ | 0.2862 | 2.0 | 860 | 0.1093 | 0.8384 | 0.8482 | 0.8433 | 0.9695 |
59
+ | 0.1043 | 3.0 | 1290 | 0.1121 | 0.8448 | 0.8556 | 0.8502 | 0.9708 |
60
+ | 0.0689 | 4.0 | 1720 | 0.1094 | 0.8635 | 0.8650 | 0.8643 | 0.9737 |
61
+ | 0.0473 | 5.0 | 2150 | 0.1225 | 0.8665 | 0.8625 | 0.8645 | 0.9736 |
62
+ | 0.0342 | 6.0 | 2580 | 0.1186 | 0.8722 | 0.8730 | 0.8726 | 0.9745 |
63
+ | 0.0245 | 7.0 | 3010 | 0.1292 | 0.8802 | 0.8717 | 0.8759 | 0.9755 |
64
+ | 0.0245 | 8.0 | 3440 | 0.1309 | 0.8832 | 0.8689 | 0.8760 | 0.9749 |
65
+ | 0.0177 | 9.0 | 3870 | 0.1388 | 0.8712 | 0.8717 | 0.8715 | 0.9743 |
66
+ | 0.0135 | 10.0 | 4300 | 0.1466 | 0.8699 | 0.8728 | 0.8714 | 0.9752 |
67
+ | 0.0103 | 11.0 | 4730 | 0.1486 | 0.8716 | 0.8747 | 0.8731 | 0.9756 |
68
+ | 0.0081 | 12.0 | 5160 | 0.1521 | 0.8789 | 0.8736 | 0.8762 | 0.9759 |
69
+ | 0.007 | 13.0 | 5590 | 0.1546 | 0.8804 | 0.8734 | 0.8769 | 0.9756 |
70
+ | 0.0053 | 14.0 | 6020 | 0.1552 | 0.8750 | 0.8732 | 0.8741 | 0.9756 |
71
+ | 0.0053 | 15.0 | 6450 | 0.1579 | 0.8794 | 0.8745 | 0.8769 | 0.9758 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.27.0.dev0
77
+ - Pytorch 1.13.1+cu116
78
+ - Datasets 2.8.0
79
+ - Tokenizers 0.13.2