Amarsanaa1525 commited on
Commit
71890ea
1 Parent(s): 16a289b

End of training

Browse files
Files changed (1) hide show
  1. README.md +22 -11
README.md CHANGED
@@ -5,6 +5,11 @@ license: mit
5
  base_model: xlm-roberta-large
6
  tags:
7
  - generated_from_trainer
 
 
 
 
 
8
  model-index:
9
  - name: xlm-roberta-large-ner-demo
10
  results: []
@@ -17,16 +22,11 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
- - eval_loss: 0.0728
21
- - eval_precision: 0.9070
22
- - eval_recall: 0.9260
23
- - eval_f1: 0.9164
24
- - eval_accuracy: 0.9789
25
- - eval_runtime: 99.382
26
- - eval_samples_per_second: 25.568
27
- - eval_steps_per_second: 0.805
28
- - epoch: 2.0
29
- - step: 954
30
 
31
  ## Model description
32
 
@@ -51,7 +51,18 @@ The following hyperparameters were used during training:
51
  - seed: 42
52
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
  - lr_scheduler_type: linear
54
- - num_epochs: 10
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  ### Framework versions
57
 
 
5
  base_model: xlm-roberta-large
6
  tags:
7
  - generated_from_trainer
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
  model-index:
14
  - name: xlm-roberta-large-ner-demo
15
  results: []
 
22
 
23
  This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
24
  It achieves the following results on the evaluation set:
25
+ - Loss: 0.0976
26
+ - Precision: 0.9340
27
+ - Recall: 0.9404
28
+ - F1: 0.9372
29
+ - Accuracy: 0.9816
 
 
 
 
 
30
 
31
  ## Model description
32
 
 
51
  - seed: 42
52
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
  - lr_scheduler_type: linear
54
+ - num_epochs: 5
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
60
+ | 0.1657 | 1.0 | 477 | 0.0866 | 0.8655 | 0.8978 | 0.8814 | 0.9752 |
61
+ | 0.0716 | 2.0 | 954 | 0.0801 | 0.9135 | 0.9283 | 0.9208 | 0.9796 |
62
+ | 0.0448 | 3.0 | 1431 | 0.0814 | 0.9244 | 0.9374 | 0.9309 | 0.9805 |
63
+ | 0.0283 | 4.0 | 1908 | 0.0870 | 0.9256 | 0.9367 | 0.9311 | 0.9808 |
64
+ | 0.017 | 5.0 | 2385 | 0.0976 | 0.9340 | 0.9404 | 0.9372 | 0.9816 |
65
+
66
 
67
  ### Framework versions
68