Upload 50k.py with huggingface_hub
Browse files
50k.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
from multiprocessing import Pool
|
4 |
+
import time
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
def process_rows(args):
|
8 |
+
rows, output_directory = args
|
9 |
+
for index, row in rows.iterrows():
|
10 |
+
# Generate the output text file path
|
11 |
+
text_filename = f"row_{index}.txt"
|
12 |
+
text_file_path = os.path.join(output_directory, text_filename)
|
13 |
+
|
14 |
+
# Write the row to a text file
|
15 |
+
with open(text_file_path, 'w') as text_file:
|
16 |
+
text_file.write(','.join(row.astype(str)))
|
17 |
+
|
18 |
+
# Directory containing the CSV files
|
19 |
+
csv_directory = "extracted_csv_files"
|
20 |
+
|
21 |
+
# Number of text files to generate
|
22 |
+
target_count = 50000
|
23 |
+
|
24 |
+
# Get the list of CSV files in the directory
|
25 |
+
csv_files = [os.path.join(csv_directory, file) for file in os.listdir(csv_directory) if file.endswith(".csv")]
|
26 |
+
|
27 |
+
# Create a directory to store the extracted text files
|
28 |
+
output_directory = "extracted_text_files_50k"
|
29 |
+
os.makedirs(output_directory, exist_ok=True)
|
30 |
+
|
31 |
+
# Initialize variables
|
32 |
+
total_count = 0
|
33 |
+
file_index = 0
|
34 |
+
|
35 |
+
# Start the timer
|
36 |
+
start_time = time.time()
|
37 |
+
|
38 |
+
# Create a progress bar
|
39 |
+
progress_bar = tqdm(total=target_count, unit='files')
|
40 |
+
|
41 |
+
# Process CSV files until the target count is reached
|
42 |
+
while total_count < target_count and file_index < len(csv_files):
|
43 |
+
csv_file_path = csv_files[file_index]
|
44 |
+
|
45 |
+
# Read the CSV file using pandas
|
46 |
+
df = pd.read_csv(csv_file_path)
|
47 |
+
|
48 |
+
# Get the number of rows in the CSV file
|
49 |
+
num_rows = len(df)
|
50 |
+
|
51 |
+
# Calculate the number of rows to extract from the current CSV file
|
52 |
+
rows_to_extract = min(target_count - total_count, num_rows)
|
53 |
+
|
54 |
+
# Extract the rows from the CSV file
|
55 |
+
rows = df.iloc[:rows_to_extract]
|
56 |
+
|
57 |
+
# Create a multiprocessing pool
|
58 |
+
pool = Pool()
|
59 |
+
|
60 |
+
# Process the rows in parallel
|
61 |
+
pool.map(process_rows, [(rows, output_directory)])
|
62 |
+
|
63 |
+
# Close the multiprocessing pool
|
64 |
+
pool.close()
|
65 |
+
pool.join()
|
66 |
+
|
67 |
+
total_count += rows_to_extract
|
68 |
+
file_index += 1
|
69 |
+
|
70 |
+
# Update the progress bar
|
71 |
+
progress_bar.update(rows_to_extract)
|
72 |
+
|
73 |
+
# Close the progress bar
|
74 |
+
progress_bar.close()
|
75 |
+
|
76 |
+
# End the timer
|
77 |
+
end_time = time.time()
|
78 |
+
|
79 |
+
# Calculate the execution time
|
80 |
+
execution_time = end_time - start_time
|
81 |
+
|
82 |
+
print(f"\nGenerated {total_count} text files.")
|
83 |
+
print(f"Execution time: {execution_time:.2f} seconds.")
|