Alizee commited on
Commit
0f6a056
1 Parent(s): 2691dde

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -21
README.md CHANGED
@@ -1,16 +1,15 @@
1
  ---
2
  license: mit
3
  base_model: xlm-roberta-large
4
- tags:
5
- - generated_from_trainer
6
- metrics:
7
- - precision
8
- - recall
9
- - f1
10
- - accuracy
11
  model-index:
12
  - name: xlm-roberta-large-finetuned-wikiner-fr
13
  results: []
 
 
 
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,27 +17,37 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # xlm-roberta-large-finetuned-wikiner-fr
20
 
21
- This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the Alizee/wikiner_fr_mixed_caps dataset.
22
- It achieves the following results on the evaluation set:
23
- - Loss: 0.0518
24
- - Precision: 0.8881
25
- - Recall: 0.9014
26
- - F1: 0.8947
27
- - Accuracy: 0.9855
28
 
29
- ## Model description
 
 
30
 
31
- More information needed
32
 
33
  ## Intended uses & limitations
34
 
35
- More information needed
 
 
 
 
 
 
 
 
36
 
37
- ## Training and evaluation data
38
 
39
- More information needed
 
 
 
 
 
40
 
41
- ## Training procedure
42
 
43
  ### Training hyperparameters
44
 
@@ -95,4 +104,4 @@ The following hyperparameters were used during training:
95
  - Transformers 4.36.2
96
  - Pytorch 2.0.1
97
  - Datasets 2.16.1
98
- - Tokenizers 0.15.0
 
1
  ---
2
  license: mit
3
  base_model: xlm-roberta-large
 
 
 
 
 
 
 
4
  model-index:
5
  - name: xlm-roberta-large-finetuned-wikiner-fr
6
  results: []
7
+ datasets:
8
+ - Alizee/wikiner_fr_mixed_caps
9
+ pipeline_tag: token-classification
10
+ language:
11
+ - fr
12
+ library_name: transformers
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
17
 
18
  # xlm-roberta-large-finetuned-wikiner-fr
19
 
20
+ This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the [Alizee/wikiner_fr_mixed_caps](https://huggingface.co/datasets/Alizee/wikiner_fr_mixed_caps).
21
+
22
+
23
+ ## Why this model?
 
 
 
24
 
25
+ Credits to [Jean-Baptiste](https://huggingface.co/Jean-Baptiste) for building the current "best" model for French NER "[camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner)" based on wikiNER ([Jean-Baptiste/wikiner_fr](https://huggingface.co/datasets/Jean-Baptiste/wikiner_fr)).
26
+
27
+ xlm-roberta-large models fine-tuned on conll03 [English](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) and especially [German](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-german) were outperforming the Camembert-NER model in my own tasks. This inspired me to build a French version of the xlm-roberta-large models based on the wikiNER dataset, with the hope to create a slightly improved standard for French 4-entity NER.
28
 
 
29
 
30
  ## Intended uses & limitations
31
 
32
+ 4-entity NER for French, with the following tags:
33
+
34
+ Abbreviation|Description
35
+ -|-
36
+ O |Outside of a named entity
37
+ MISC |Miscellaneous entity
38
+ PER |Person’s name
39
+ ORG |Organization
40
+ LOC |Location
41
 
42
+ ## Performance
43
 
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.0518
46
+ - Precision: 0.8881
47
+ - Recall: 0.9014
48
+ - F1: 0.8947
49
+ - Accuracy: 0.9855
50
 
 
51
 
52
  ### Training hyperparameters
53
 
 
104
  - Transformers 4.36.2
105
  - Pytorch 2.0.1
106
  - Datasets 2.16.1
107
+ - Tokenizers 0.15.0