--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.81 --- # wav2vec2-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8119 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0253 | 0.99 | 28 | 1.8206 | 0.38 | | 1.3127 | 1.98 | 56 | 1.1930 | 0.64 | | 0.9726 | 2.97 | 84 | 0.9269 | 0.69 | | 1.2272 | 4.0 | 113 | 1.1682 | 0.66 | | 0.6441 | 4.99 | 141 | 0.9781 | 0.71 | | 0.5447 | 5.98 | 169 | 0.8603 | 0.74 | | 0.3067 | 6.97 | 197 | 0.6313 | 0.86 | | 0.1481 | 8.0 | 226 | 0.5746 | 0.89 | | 0.0599 | 8.99 | 254 | 0.7602 | 0.84 | | 0.0306 | 9.91 | 280 | 0.8119 | 0.81 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3